ltg
/

ssa-perin / model /head /labeled_edge_head.py
larkkin's picture
Add code and readme
c45d283
raw
history blame
2.76 kB
#!/usr/bin/env python3
# coding=utf-8
import torch
import torch.nn as nn
from model.head.abstract_head import AbstractHead
from data.parser.to_mrp.labeled_edge_parser import LabeledEdgeParser
from utility.cross_entropy import binary_cross_entropy
from utility.hungarian_matching import match_label
class LabeledEdgeHead(AbstractHead):
def __init__(self, dataset, args, initialize):
config = {
"label": True,
"edge presence": True,
"edge label": True,
"anchor": True,
"source_anchor": False,
"target_anchor": False
}
super(LabeledEdgeHead, self).__init__(dataset, args, config, initialize)
self.top_node = nn.Parameter(torch.randn(1, 1, args.hidden_size), requires_grad=True)
self.parser = LabeledEdgeParser(dataset)
def init_label_classifier(self, dataset, args, config, initialize: bool):
classifier = nn.Sequential(
nn.Dropout(args.dropout_label),
nn.Linear(args.hidden_size, 1, bias=True)
)
if initialize:
bias_init = torch.tensor([dataset.label_freqs[1]])
classifier[1].bias.data = (bias_init / (1.0 - bias_init)).log()
return classifier
def forward_label(self, decoder_output):
return self.label_classifier(decoder_output)
def forward_edge(self, decoder_output):
top_node = self.top_node.expand(decoder_output.size(0), -1, -1)
decoder_output = torch.cat([top_node, decoder_output], dim=1)
return self.edge_classifier(decoder_output)
def loss_label(self, prediction, target, mask, matching):
prediction = prediction["label"]
target = match_label(
target["labels"][0], matching, prediction.shape[:-1], prediction.device, self.query_length
)
return {"label": binary_cross_entropy(prediction.squeeze(-1), target.float(), mask, focal=self.focal)}
def inference_label(self, prediction):
return (prediction.squeeze(-1) > 0.0).long()
def label_cost_matrix(self, output, batch, decoder_lens, b: int):
if output["label"] is None:
return 1.0
target_labels = batch["anchored_labels"][b] # shape: (num_nodes, num_inputs, 2)
label_prob = output["label"][b, : decoder_lens[b], :].sigmoid().unsqueeze(0) # shape: (1, num_queries, 1)
label_prob = torch.cat([1.0 - label_prob, label_prob], dim=-1) # shape: (1, num_queries, 2)
tgt_label = target_labels.repeat_interleave(self.query_length, dim=1) # shape: (num_nodes, num_queries, 2)
cost_matrix = ((tgt_label * label_prob).sum(-1) * label_prob[:, :, 1:].sum(-1)).t().sqrt() # shape: (num_queries, num_nodes)
return cost_matrix