lucienbaumgartner commited on
Commit
6241c2e
·
verified ·
1 Parent(s): e750749

Add SetFit model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,246 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - setfit
4
+ - sentence-transformers
5
+ - text-classification
6
+ - generated_from_setfit_trainer
7
+ widget:
8
+ - text: "most of the results look perfectly healthy, but there are a few that are\
9
+ \ over thresholds, they are: \n\n "
10
+ - text: 'so here''s my question: is it possible to have a very slow natural breathing
11
+ rate and be healthy?'
12
+ - text: 'never had an issue with reflux before, i eat very healthy....but gave it
13
+ a go. '
14
+ - text: does every other person at their healthy weight range feel like this all the
15
+ time?
16
+ - text: penis overall just looks very unhealthy compared to last year and i have no
17
+ idea what it could be and everywhere i’ve looked suggest it is penile cancer.
18
+ metrics:
19
+ - accuracy
20
+ - precision
21
+ - recall
22
+ - f1
23
+ pipeline_tag: text-classification
24
+ library_name: setfit
25
+ inference: true
26
+ base_model: sentence-transformers/paraphrase-mpnet-base-v2
27
+ model-index:
28
+ - name: SetFit with sentence-transformers/paraphrase-mpnet-base-v2
29
+ results:
30
+ - task:
31
+ type: text-classification
32
+ name: Text Classification
33
+ dataset:
34
+ name: Unknown
35
+ type: unknown
36
+ split: test
37
+ metrics:
38
+ - type: accuracy
39
+ value: 0.9411764705882353
40
+ name: Accuracy
41
+ - type: precision
42
+ value: 0.9411764705882353
43
+ name: Precision
44
+ - type: recall
45
+ value: 0.9411764705882353
46
+ name: Recall
47
+ - type: f1
48
+ value: 0.9411764705882353
49
+ name: F1
50
+ ---
51
+
52
+ # SetFit with sentence-transformers/paraphrase-mpnet-base-v2
53
+
54
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
55
+
56
+ The model has been trained using an efficient few-shot learning technique that involves:
57
+
58
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
59
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
60
+
61
+ ## Model Details
62
+
63
+ ### Model Description
64
+ - **Model Type:** SetFit
65
+ - **Sentence Transformer body:** [sentence-transformers/paraphrase-mpnet-base-v2](https://huggingface.co/sentence-transformers/paraphrase-mpnet-base-v2)
66
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
67
+ - **Maximum Sequence Length:** 512 tokens
68
+ - **Number of Classes:** 2 classes
69
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
70
+ <!-- - **Language:** Unknown -->
71
+ <!-- - **License:** Unknown -->
72
+
73
+ ### Model Sources
74
+
75
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
76
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
77
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
78
+
79
+ ### Model Labels
80
+ | Label | Examples |
81
+ |:----------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
82
+ | lifestyle | <ul><li>'i am 21, live a healthy lifestyle, i don’t smoke and only drink socially every once in a while.'</li><li>'i know staying up all night and sleeping during the day isnt good for you, brain wise and hormonaly, i will try my best to eat healthy and have good sleep hygiene, but am i risking my health or anything ?'</li><li>'i have been eating a bit more unhealthy foods like fried foods.\n\n'</li></ul> |
83
+ | disease | <ul><li>'i was told there’s no way to know what caused it &amp; no treatment options or ways to help fix it besides med options to help manage symptoms but my doc doesn’t want to start that yet due to me being “young &amp; healthy”.'</li><li>"i gave the whole history because i've been very ill like this for 6 years now after being healthy."</li><li>'no baseline medical information included, so the following assumes you are healthy.'</li></ul> |
84
+
85
+ ## Evaluation
86
+
87
+ ### Metrics
88
+ | Label | Accuracy | Precision | Recall | F1 |
89
+ |:--------|:---------|:----------|:-------|:-------|
90
+ | **all** | 0.9412 | 0.9412 | 0.9412 | 0.9412 |
91
+
92
+ ## Uses
93
+
94
+ ### Direct Use for Inference
95
+
96
+ First install the SetFit library:
97
+
98
+ ```bash
99
+ pip install setfit
100
+ ```
101
+
102
+ Then you can load this model and run inference.
103
+
104
+ ```python
105
+ from setfit import SetFitModel
106
+
107
+ # Download from the 🤗 Hub
108
+ model = SetFitModel.from_pretrained("setfit_model_id")
109
+ # Run inference
110
+ preds = model("never had an issue with reflux before, i eat very healthy....but gave it a go. ")
111
+ ```
112
+
113
+ <!--
114
+ ### Downstream Use
115
+
116
+ *List how someone could finetune this model on their own dataset.*
117
+ -->
118
+
119
+ <!--
120
+ ### Out-of-Scope Use
121
+
122
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
123
+ -->
124
+
125
+ <!--
126
+ ## Bias, Risks and Limitations
127
+
128
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
129
+ -->
130
+
131
+ <!--
132
+ ### Recommendations
133
+
134
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
135
+ -->
136
+
137
+ ## Training Details
138
+
139
+ ### Training Set Metrics
140
+ | Training set | Min | Median | Max |
141
+ |:-------------|:----|:--------|:----|
142
+ | Word count | 12 | 25.8308 | 60 |
143
+
144
+ | Label | Training Sample Count |
145
+ |:----------|:----------------------|
146
+ | disease | 30 |
147
+ | lifestyle | 35 |
148
+
149
+ ### Training Hyperparameters
150
+ - batch_size: (16, 16)
151
+ - num_epochs: (10, 10)
152
+ - max_steps: -1
153
+ - sampling_strategy: oversampling
154
+ - num_iterations: 20
155
+ - body_learning_rate: (2e-05, 2e-05)
156
+ - head_learning_rate: 2e-05
157
+ - loss: CosineSimilarityLoss
158
+ - distance_metric: cosine_distance
159
+ - margin: 0.25
160
+ - end_to_end: False
161
+ - use_amp: False
162
+ - warmup_proportion: 0.1
163
+ - l2_weight: 0.01
164
+ - seed: 3786
165
+ - eval_max_steps: -1
166
+ - load_best_model_at_end: False
167
+
168
+ ### Training Results
169
+ | Epoch | Step | Training Loss | Validation Loss |
170
+ |:------:|:----:|:-------------:|:---------------:|
171
+ | 0.0061 | 1 | 0.2143 | - |
172
+ | 0.3067 | 50 | 0.2243 | - |
173
+ | 0.6135 | 100 | 0.0812 | - |
174
+ | 0.9202 | 150 | 0.0019 | - |
175
+ | 1.2270 | 200 | 0.0003 | - |
176
+ | 1.5337 | 250 | 0.0002 | - |
177
+ | 1.8405 | 300 | 0.0002 | - |
178
+ | 2.1472 | 350 | 0.0001 | - |
179
+ | 2.4540 | 400 | 0.0001 | - |
180
+ | 2.7607 | 450 | 0.0001 | - |
181
+ | 3.0675 | 500 | 0.0001 | - |
182
+ | 3.3742 | 550 | 0.0001 | - |
183
+ | 3.6810 | 600 | 0.0001 | - |
184
+ | 3.9877 | 650 | 0.0001 | - |
185
+ | 4.2945 | 700 | 0.0001 | - |
186
+ | 4.6012 | 750 | 0.0001 | - |
187
+ | 4.9080 | 800 | 0.0001 | - |
188
+ | 5.2147 | 850 | 0.0001 | - |
189
+ | 5.5215 | 900 | 0.0001 | - |
190
+ | 5.8282 | 950 | 0.0001 | - |
191
+ | 6.1350 | 1000 | 0.0 | - |
192
+ | 6.4417 | 1050 | 0.0 | - |
193
+ | 6.7485 | 1100 | 0.0 | - |
194
+ | 7.0552 | 1150 | 0.0 | - |
195
+ | 7.3620 | 1200 | 0.0 | - |
196
+ | 7.6687 | 1250 | 0.0 | - |
197
+ | 7.9755 | 1300 | 0.0 | - |
198
+ | 8.2822 | 1350 | 0.0 | - |
199
+ | 8.5890 | 1400 | 0.0 | - |
200
+ | 8.8957 | 1450 | 0.0 | - |
201
+ | 9.2025 | 1500 | 0.0 | - |
202
+ | 9.5092 | 1550 | 0.0 | - |
203
+ | 9.8160 | 1600 | 0.0 | - |
204
+
205
+ ### Framework Versions
206
+ - Python: 3.11.7
207
+ - SetFit: 1.1.1
208
+ - Sentence Transformers: 3.3.1
209
+ - Transformers: 4.47.1
210
+ - PyTorch: 2.5.1
211
+ - Datasets: 3.2.0
212
+ - Tokenizers: 0.21.0
213
+
214
+ ## Citation
215
+
216
+ ### BibTeX
217
+ ```bibtex
218
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
219
+ doi = {10.48550/ARXIV.2209.11055},
220
+ url = {https://arxiv.org/abs/2209.11055},
221
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
222
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
223
+ title = {Efficient Few-Shot Learning Without Prompts},
224
+ publisher = {arXiv},
225
+ year = {2022},
226
+ copyright = {Creative Commons Attribution 4.0 International}
227
+ }
228
+ ```
229
+
230
+ <!--
231
+ ## Glossary
232
+
233
+ *Clearly define terms in order to be accessible across audiences.*
234
+ -->
235
+
236
+ <!--
237
+ ## Model Card Authors
238
+
239
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
240
+ -->
241
+
242
+ <!--
243
+ ## Model Card Contact
244
+
245
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
246
+ -->
config.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/paraphrase-mpnet-base-v2",
3
+ "architectures": [
4
+ "MPNetModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 3072,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "mpnet",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 1,
20
+ "relative_attention_num_buckets": 32,
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.47.1",
23
+ "vocab_size": 30527
24
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.47.1",
5
+ "pytorch": "2.5.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "labels": [
3
+ "disease",
4
+ "lifestyle"
5
+ ],
6
+ "normalize_embeddings": false
7
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87f8d3c0ab970a7de21cfc60875ed57f662707e1d8201b362ef7b285e2fc22b9
3
+ size 437967672
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3e8348971f23002372cc4bc35561417920810374b39ab6daf18aa1d4447d7bb9
3
+ size 7071
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "<s>",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "<pad>",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "</s>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "104": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "30526": {
36
+ "content": "<mask>",
37
+ "lstrip": true,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "<s>",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "<s>",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": true,
49
+ "eos_token": "</s>",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_token": "<pad>",
55
+ "sep_token": "</s>",
56
+ "strip_accents": null,
57
+ "tokenize_chinese_chars": true,
58
+ "tokenizer_class": "MPNetTokenizer",
59
+ "unk_token": "[UNK]"
60
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff