update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,89 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
datasets:
|
6 |
+
- chest-xray-classification
|
7 |
+
metrics:
|
8 |
+
- accuracy
|
9 |
+
model-index:
|
10 |
+
- name: vit-xray-pneumonia-classification
|
11 |
+
results:
|
12 |
+
- task:
|
13 |
+
name: Image Classification
|
14 |
+
type: image-classification
|
15 |
+
dataset:
|
16 |
+
name: chest-xray-classification
|
17 |
+
type: chest-xray-classification
|
18 |
+
config: full
|
19 |
+
split: validation
|
20 |
+
args: full
|
21 |
+
metrics:
|
22 |
+
- name: Accuracy
|
23 |
+
type: accuracy
|
24 |
+
value: 0.9742489270386266
|
25 |
+
---
|
26 |
+
|
27 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
28 |
+
should probably proofread and complete it, then remove this comment. -->
|
29 |
+
|
30 |
+
# vit-xray-pneumonia-classification
|
31 |
+
|
32 |
+
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the chest-xray-classification dataset.
|
33 |
+
It achieves the following results on the evaluation set:
|
34 |
+
- Loss: 0.0868
|
35 |
+
- Accuracy: 0.9742
|
36 |
+
|
37 |
+
## Model description
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Intended uses & limitations
|
42 |
+
|
43 |
+
More information needed
|
44 |
+
|
45 |
+
## Training and evaluation data
|
46 |
+
|
47 |
+
More information needed
|
48 |
+
|
49 |
+
## Training procedure
|
50 |
+
|
51 |
+
### Training hyperparameters
|
52 |
+
|
53 |
+
The following hyperparameters were used during training:
|
54 |
+
- learning_rate: 5e-05
|
55 |
+
- train_batch_size: 16
|
56 |
+
- eval_batch_size: 16
|
57 |
+
- seed: 42
|
58 |
+
- gradient_accumulation_steps: 4
|
59 |
+
- total_train_batch_size: 64
|
60 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
61 |
+
- lr_scheduler_type: linear
|
62 |
+
- lr_scheduler_warmup_ratio: 0.1
|
63 |
+
- num_epochs: 15
|
64 |
+
|
65 |
+
### Training results
|
66 |
+
|
67 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
68 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|
|
69 |
+
| 0.5152 | 0.99 | 63 | 0.2507 | 0.9245 |
|
70 |
+
| 0.2334 | 1.99 | 127 | 0.1766 | 0.9382 |
|
71 |
+
| 0.1647 | 3.0 | 191 | 0.1218 | 0.9588 |
|
72 |
+
| 0.144 | 4.0 | 255 | 0.1222 | 0.9502 |
|
73 |
+
| 0.1348 | 4.99 | 318 | 0.1293 | 0.9571 |
|
74 |
+
| 0.1276 | 5.99 | 382 | 0.1000 | 0.9665 |
|
75 |
+
| 0.1175 | 7.0 | 446 | 0.1177 | 0.9502 |
|
76 |
+
| 0.109 | 8.0 | 510 | 0.1079 | 0.9665 |
|
77 |
+
| 0.0914 | 8.99 | 573 | 0.0804 | 0.9717 |
|
78 |
+
| 0.0872 | 9.99 | 637 | 0.0800 | 0.9717 |
|
79 |
+
| 0.0804 | 11.0 | 701 | 0.0862 | 0.9682 |
|
80 |
+
| 0.0935 | 12.0 | 765 | 0.0883 | 0.9657 |
|
81 |
+
| 0.0686 | 12.99 | 828 | 0.0868 | 0.9742 |
|
82 |
+
|
83 |
+
|
84 |
+
### Framework versions
|
85 |
+
|
86 |
+
- Transformers 4.30.2
|
87 |
+
- Pytorch 1.9.0+cu102
|
88 |
+
- Datasets 2.12.0
|
89 |
+
- Tokenizers 0.13.3
|