File size: 10,993 Bytes
acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 acdefb8 2f546f1 72cabd7 2f546f1 acdefb8 2f546f1 acdefb8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
---
language: ka
datasets:
- common_voice
tags:
- audio
- automatic-speech-recognition
- speech
- xlsr-fine-tuning-week
license: apache-2.0
widget:
- label: Common Voice sample 566
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample566.flac
- label: Common Voice sample 95
src: https://huggingface.co/m3hrdadfi/wav2vec2-large-xlsr-georgian/resolve/main/sample95.flac
model-index:
- name: XLSR Wav2Vec2 Georgian by Mehrdad Farahani
results:
- task:
name: Speech Recognition
type: automatic-speech-recognition
dataset:
name: Common Voice ka
type: common_voice
args: ka
metrics:
- name: Test WER
type: wer
value: 54.00
---
# Wav2Vec2-Large-XLSR-53-Georgian
Fine-tuned [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53) in Georgian using [Common Voice](https://huggingface.co/datasets/common_voice). When using this model, make sure that your speech input is sampled at 16kHz.
## Usage
The model can be used directly (without a language model) as follows:
**Requirements**
```bash
# requirement packages
!pip install git+https://github.com/huggingface/datasets.git
!pip install git+https://github.com/huggingface/transformers.git
!pip install torchaudio
!pip install librosa
!pip install jiwer
```
**Prediction**
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset
import numpy as np
import re
import string
import IPython.display as ipd
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "๏ฟฝ",
"#", "!", "?", "ยซ", "ยป", "(", ")", "ุ", ",", "?", ".", "!", "-", ";", ":", '"',
"โ", "%", "โ", "๏ฟฝ", "โ", "โฆ", "_", "โ", 'โ', 'โ'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
dataset = load_dataset("common_voice", "ka", split="test[:1%]")
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
max_items = np.random.randint(0, len(result), 20).tolist()
for i in max_items:
reference, predicted = result["sentence"][i], result["predicted"][i]
print("reference:", reference)
print("predicted:", predicted)
print('---')
```
**Output:**
```text
reference: แแแแแแแกแขแ แแชแแฃแแ แชแแแขแ แ แฅแแแแฅแ แแแแจแแ
predicted: แแแแแแแกแขแ แแชแแฃแแ แชแแแขแ แ แฅแแแแฅแ แแแแจแแ
---
reference: แแแแแแแ แแแแแแแขแแก แแฏแแฎแจแ
predicted: แแแแแแ แแแแแแแขแแก แแฏแแฎแจแ
---
reference: แแฆแกแแแแจแแแแแ แ แแ แกแแแฆแแ แ แฌแแ แแแแแแแแก แแแ แแแแแแ แขแแแกแ แแ แฏแแ แฏ แฐแแ แแกแแแแก แแจแแแแ แแแแแแฃแ แแฃแแขแก
predicted: แแฆแกแแแแจแแแแแแ แ แกแแแฆแ แ แแฌแแ แแแแแแแแก แแแ แแแแแ แแแแก แแ แฏแแ แฉแฎแแ แแกแแแแก แแจแแแแ แแแแแแฃแ แแฃแแแก
---
reference: แแแ แซแแแแแแแ แฌแแ แแแแแชแแ แฅแแ แแฃแ แแแแแ
predicted: แแแ แซแแแแแแแ แฌแแ แแ แแแชแแ แฅแแ แแฃแ แแแแแ
---
reference: แแฆแแแ แแฃแแแ แแแแแกแ แแ แแแ แแแก แแแแขแแแแแแก แกแแแฆแแแ แแ
predicted: แแฆแแแ แแฃแแแ แแแแแกแ แแ แแแ แแแก แแแแแแแแแแก แกแแแฆแแแ แแ
---
reference: แแฅ แแแ แแแแฌแแแแก แกแแแฎแแขแแ แ แแแแแแแแแจแ แกแแแแช แกแแชแแชแฎแแแก แแแแแแแ แแฌแแแแ แแแแแแแแแฃแ แแแฆแแแฌแแแแแก
predicted: แแฅ แแแ แแแแกแฌแ แแแแก แกแแแฎแแขแ แ แแแแแแแ แแจแแกแ แแ แชแแชแแชแฎแแแก แแแแแแแ แแฌแงแแแแ แแ แแแแแแฃแแแแแ แแแงแแแฌแแแแแแก
---
reference: แแแแ แแกแ แแแแฎแแแแแ แจแแแแแแแแแแแแแ แแ แแแฅแขแแ แแก แแแฎแแแ แแแแ แกแแ แแฃแแ แแแแแแแแก แแแแแก แแแแแแแแ
predicted: แแแแ แแก แแแ แฎแแแแแ แจแแแฃแแแแแแ แแแแ แแ แแแฅแขแแ แแก แแแฎแแแ แแแแช แกแแ แแฃแ แ แแแแแแแแก แแแแแก แแแแแแแแแ
---
reference: แแแ แซแแแ แขแงแแแแแแ แแแญแ แแแแก แฌแแแแแฆแแแแ
predicted: แแแแ แซแแขแ แขแงแแแแแแ แแแญแ แแแแก แฌแแแแแฆแแแ
---
reference: แกแแแแแกแก แแฆแแแกแแแแแแแ แแ แแแกแแแแแแแ แแแแ แกแแ แแแแแ แแฅแแก
predicted: แกแแแแแก แแฆแแแกแแแแแแแ แแ แแแกแแแแแ แแแแแ แกแแ แแแแแ แแฅแแก
---
reference: แแแ แแแแแแ แแแแก แฅแแแแฅแแก แฉแ แแแแแแฆแแแกแแแแแ แแแฌแแแจแ
predicted: แแแ แแแแแแ แแแแก แฅแแแแฅแแก แฉแ แแแแ แแฆแแแกแแแแแ แแแฌแแแจแ
---
```
## Evaluation
The model can be evaluated as follows on the Georgian test data of Common Voice.
```python
import librosa
import torch
import torchaudio
from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor
from datasets import load_dataset, load_metric
import numpy as np
import re
import string
chars_to_ignore = [
",", "?", ".", "!", "-", ";", ":", '""', "%", "'", '"', "๏ฟฝ",
"#", "!", "?", "ยซ", "ยป", "(", ")", "ุ", ",", "?", ".", "!", "-", ";", ":", '"',
"โ", "%", "โ", "๏ฟฝ", "โ", "โฆ", "_", "โ", 'โ', 'โ'
]
chars_to_mapping = {
"\u200c": " ", "\u200d": " ", "\u200e": " ", "\u200f": " ", "\ufeff": " ",
}
def multiple_replace(text, chars_to_mapping):
pattern = "|".join(map(re.escape, chars_to_mapping.keys()))
return re.sub(pattern, lambda m: chars_to_mapping[m.group()], str(text))
def remove_special_characters(text, chars_to_ignore_regex):
text = re.sub(chars_to_ignore_regex, '', text).lower() + " "
return text
def normalizer(batch, chars_to_ignore, chars_to_mapping):
chars_to_ignore_regex = f"""[{"".join(chars_to_ignore)}]"""
text = batch["sentence"].lower().strip()
text = multiple_replace(text, chars_to_mapping)
text = remove_special_characters(text, chars_to_ignore_regex)
batch["sentence"] = text
return batch
def speech_file_to_array_fn(batch):
speech_array, sampling_rate = torchaudio.load(batch["path"])
speech_array = speech_array.squeeze().numpy()
speech_array = librosa.resample(np.asarray(speech_array), sampling_rate, 16_000)
batch["speech"] = speech_array
return batch
def predict(batch):
features = processor(batch["speech"], sampling_rate=16_000, return_tensors="pt", padding=True)
input_values = features.input_values.to(device)
attention_mask = features.attention_mask.to(device)
with torch.no_grad():
logits = model(input_values, attention_mask=attention_mask).logits
pred_ids = torch.argmax(logits, dim=-1)
batch["predicted"] = processor.batch_decode(pred_ids)[0]
return batch
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = Wav2Vec2Processor.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian")
model = Wav2Vec2ForCTC.from_pretrained("m3hrdadfi/wav2vec2-large-xlsr-georgian").to(device)
dataset = load_dataset("common_voice", "ka", split="test")
dataset = dataset.map(
normalizer,
fn_kwargs={"chars_to_ignore": chars_to_ignore, "chars_to_mapping": chars_to_mapping},
remove_columns=list(set(dataset.column_names) - set(['sentence', 'path']))
)
dataset = dataset.map(speech_file_to_array_fn)
result = dataset.map(predict)
wer = load_metric("wer")
print("WER: {:.2f}".format(100 * wer.compute(predictions=result["predicted"], references=result["sentence"])))
```
**Test Result**:
- WER: 54.00%
## Training & Report
The Common Voice `train`, `validation` datasets were used for training.
You can see the training states [here](https://wandb.ai/m3hrdadfi/finetuned_wav2vec_xlsr_georgian/reports/Fine-Tuning-for-Wav2Vec2-Large-XLSR-53-Georgian--Vmlldzo1NTg5MDQ?accessToken=rsmd0p83iln13yq23b9kzj8bim6nco21w8cqn2tb19v51okakqk92c71h6hbxmfj)
The script used for training can be found [here](https://colab.research.google.com/github/m3hrdadfi/notebooks/blob/main/Fine_Tune_XLSR_Wav2Vec2_on_Georgian_ASR_with_%F0%9F%A4%97_Transformers_ipynb.ipynb) |