File size: 6,995 Bytes
6f8e9b5 ca3363a 6f8e9b5 ca3363a 7c221c5 ca3363a 0f3397e 68eb178 0f3397e 7ef1a69 0f3397e dd77a9b 9cdd545 a707793 9cdd545 dd77a9b ca3363a 0f3397e ca3363a 5cbb997 ca3363a 0f3397e ca3363a 0f3397e ca3363a 0f3397e ca3363a f057f17 5cbb997 f057f17 ca3363a 9d2edb4 ca3363a 7fbf0e1 5cbb997 7fbf0e1 1efd870 dd77a9b 8411c1e ca3363a 8411c1e ca3363a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
---
license: apache-2.0
language:
- en
- de
- es
- fr
tags:
- sft
inference: false
datasets:
- OpenAssistant/oasst1
---
[![banner](https://maddes8cht.github.io/assets/buttons/Huggingface-banner.jpg)]()
I'm constantly enhancing these model descriptions to provide you with the most relevant and comprehensive information
# falcon-40b-sft-top1-560 - GGUF
- Model creator: [OpenAssistant](https://huggingface.co/OpenAssistant)
- Original model: [falcon-40b-sft-top1-560](https://huggingface.co/OpenAssistant/falcon-40b-sft-top1-560)
# K-Quants in Falcon 7b models
New releases of Llama.cpp now support K-quantization for previously incompatible models, in particular all Falcon 7B models (While Falcon 40b is and always has been fully compatible with K-Quantisation). This is achieved by employing a fallback solution for model layers that cannot be quantized with real K-quants.
For Falcon 7B models, although only a quarter of the layers can be quantized with true K-quants, this approach still benefits from utilizing *different* legacy quantization types Q4_0, Q4_1, Q5_0, and Q5_1. As a result, it offers better quality at the same file size or smaller file sizes with comparable performance.
So this solution ensures improved performance and efficiency over legacy Q4_0, Q4_1, Q5_0 and Q5_1 Quantizations.
---
# Brief
Finally got the OpenAssistant falcon *sft* models working again
* [falcon-7b-sft-top1-696](https://huggingface.co/OpenAssistant/falcon-7b-sft-top1-696)
* [falcon-40b-sft-top1-560](https://huggingface.co/OpenAssistant/falcon-40b-sft-top1-560)
* [falcon-40b-sft-mix-1226](https://huggingface.co/OpenAssistant/falcon-40b-sft-mix-1226)
---
# About GGUF format
`gguf` is the current file format used by the [`ggml`](https://github.com/ggerganov/ggml) library.
A growing list of Software is using it and can therefore use this model.
The core project making use of the ggml library is the [llama.cpp](https://github.com/ggerganov/llama.cpp) project by Georgi Gerganov
# Quantization variants
There is a bunch of quantized files available to cater to your specific needs. Here's how to choose the best option for you:
# Legacy quants
Q4_0, Q4_1, Q5_0, Q5_1 and Q8 are `legacy` quantization types.
Nevertheless, they are fully supported, as there are several circumstances that cause certain model not to be compatible with the modern K-quants.
## Note:
Now there's a new option to use K-quants even for previously 'incompatible' models, although this involves some fallback solution that makes them not *real* K-quants. More details can be found in affected model descriptions.
(This mainly refers to Falcon 7b and Starcoder models)
# K-quants
K-quants are designed with the idea that different levels of quantization in specific parts of the model can optimize performance, file size, and memory load.
So, if possible, use K-quants.
With a Q6_K, you'll likely find it challenging to discern a quality difference from the original model - ask your model two times the same question and you may encounter bigger quality differences.
---
# Original Model Card:
# Open-Assistant Falcon 40B SFT OASST-TOP1 Model
This model is a fine-tuning of TII's [Falcon 40B](https://huggingface.co/tiiuae/falcon-40b) LLM.
It was trained with top-1 (high-quality) demonstrations of the OASST data set (exported on May 6, 2023) with an effective batch size of 144 for ~7.5 epochs with LIMA style dropout (p=0.3) and a context-length of 2048 tokens.
## Model Details
- **Finetuned from:** [tiiuae/falcon-40b]((https://huggingface.co/tiiuae/falcon-40b)
- **Model type:** Causal decoder-only transformer language model
- **Language:** English, German, Spanish, French (and limited capabilities in Italian, Portuguese, Polish, Dutch, Romanian, Czech, Swedish);
- **Demo:** [Continuations for 250 random prompts](https://open-assistant.github.io/oasst-model-eval/?f=https%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Fchat-gpt%2F2023-04-11_gpt-3.5-turbo_lottery.json%0Ahttps%3A%2F%2Fraw.githubusercontent.com%2FOpen-Assistant%2Foasst-model-eval%2Fmain%2Fsampling_reports%2Foasst-sft%2F2023-06-03_OpenAssistant_falcon-40b-sft-top1-560_sampling_noprefix2.json)
- **Eval results:** [ilm-eval](https://tju01.github.io/ilm-eval/)
- **Weights & Biases**: [Training log](https://wandb.ai/open-assistant/public-sft/runs/3lr77x4h) (Checkpoint: 560 steps)
- **License:** Apache 2.0
- **Contact:** [Open-Assistant Discord](https://ykilcher.com/open-assistant-discord)
## Prompting
Two special tokens are used to mark the beginning of user and assistant turns:
`<|prompter|>` and `<|assistant|>`. Each turn ends with a `<|endoftext|>` token.
Input prompt example:
```
<|prompter|>What is a meme, and what's the history behind this word?<|endoftext|><|assistant|>
```
The input ends with the `<|assistant|>` token to signal that the model should
start generating the assistant reply.
## Configuration Details
Model:
```
falcon-40b:
dtype: bf16
log_dir: "falcon_log_40b"
learning_rate: 5e-6
model_name: "tiiuae/falcon-40b"
deepspeed_config: configs/zero3_config_falcon.json
output_dir: falcon
weight_decay: 0.0
max_length: 2048
warmup_steps: 20
gradient_checkpointing: true
gradient_accumulation_steps: 1
per_device_train_batch_size: 18
per_device_eval_batch_size: 10
eval_steps: 80
save_steps: 80
num_train_epochs: 8
save_total_limit: 4
use_flash_attention: false
residual_dropout: 0.3
residual_dropout_lima: true
sort_by_length: false
save_strategy: steps
```
Dataset:
```
oasst-top1:
datasets:
- oasst_export:
lang: "bg,ca,cs,da,de,en,es,fr,hr,hu,it,nl,pl,pt,ro,ru,sl,sr,sv,uk" # sft-8.0
input_file_path: 2023-05-06_OASST_labels.jsonl.gz
val_split: 0.05
top_k: 1
```
***End of original Model File***
---
## Please consider to support my work
**Coming Soon:** I'm in the process of launching a sponsorship/crowdfunding campaign for my work. I'm evaluating Kickstarter, Patreon, or the new GitHub Sponsors platform, and I am hoping for some support and contribution to the continued availability of these kind of models. Your support will enable me to provide even more valuable resources and maintain the models you rely on. Your patience and ongoing support are greatly appreciated as I work to make this page an even more valuable resource for the community.
<center>
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-io-button.png)](https://maddes8cht.github.io)
[![Stack Exchange](https://stackexchange.com/users/flair/26485911.png)](https://stackexchange.com/users/26485911)
[![GitHub](https://maddes8cht.github.io/assets/buttons/github-button.png)](https://github.com/maddes8cht)
[![HuggingFace](https://maddes8cht.github.io/assets/buttons/huggingface-button.png)](https://huggingface.co/maddes8cht)
[![Twitter](https://maddes8cht.github.io/assets/buttons/twitter-button.png)](https://twitter.com/maddes1966)
</center> |