File size: 6,680 Bytes
f2e980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
efec4ee
 
f2e980e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# coding=utf-8
# Copyright 2022 The Metaseq Authors and The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""OPT model configuration"""

from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)


class OPTConfig(PretrainedConfig):
    r"""
    This is the configuration class to store the configuration of a [`OPTModel`]. It is used to instantiate a OPT model
    according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the OPT
    [facebook/opt-350m](https://huggingface.co/facebook/opt-350m) architecture.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 50272):
            Vocabulary size of the OPT model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`OPTModel`]
        hidden_size (`int`, *optional*, defaults to 768):
            Dimensionality of the layers and the pooler layer.
        num_hidden_layers (`int`, *optional*, defaults to 12):
            Number of decoder layers.
        ffn_dim (`int`, *optional*, defaults to 3072):
            Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
        num_attention_heads (`int`, *optional*, defaults to 12):
            Number of attention heads for each attention layer in the Transformer decoder.
        activation_function (`str` or `function`, *optional*, defaults to `"relu"`):
            The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
            `"relu"`, `"silu"` and `"gelu_new"` are supported.
        max_position_embeddings (`int`, *optional*, defaults to 2048):
            The maximum sequence length that this model might ever be used with. Typically set this to something large
            just in case (e.g., 512 or 1024 or 2048).
        do_layer_norm_before (`bool`, *optional*, defaults to `True`):
            Whether to perform layer normalization before the attention block.
        word_embed_proj_dim (`int`, *optional*):
            `word_embed_proj_dim` can be set to down-project word embeddings, *e.g.* `opt-350m`. Defaults to
            `hidden_size`.
        dropout (`float`, *optional*, defaults to 0.1):
            The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
        attention_dropout (`float`, *optional*, defaults to 0.0):
            The dropout ratio for the attention probabilities.
        layerdrop (`float`, *optional*, defaults to 0.0):
            The LayerDrop probability. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556) for more
            details.
        init_std (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models).
        enable_bias (`bool`, *optional*, defaults to `True`):
            Whether or not if the linear layers in the attention blocks should use the bias term.
        layer_norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
            Whether or not if the layer norms should have learnable parameters.

    Example:

    ```python
    >>> from transformers import OPTConfig, OPTModel

    >>> # Initializing a OPT facebook/opt-large style configuration
    >>> configuration = OPTConfig()

    >>> # Initializing a model (with random weights) from the facebook/opt-large style configuration
    >>> model = OPTModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""

    model_type = "opt"
    keys_to_ignore_at_inference = ["past_key_values"]

    def __init__(
        self,
        vocab_size=50272,
        hidden_size=768,
        num_hidden_layers=12,
        ffn_dim=3072,
        max_position_embeddings=2048,
        do_layer_norm_before=True,
        _remove_final_layer_norm=False,
        word_embed_proj_dim=None,
        dropout=0.1,
        attention_dropout=0.0,
        num_attention_heads=12,
        activation_function="relu",
        layerdrop=0.0,
        init_std=0.02,
        use_cache=True,
        pad_token_id=1,
        bos_token_id=2,
        eos_token_id=2,
        enable_bias=True,
        layer_norm_elementwise_affine=True,
        **kwargs,
    ):
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )
        self.vocab_size = vocab_size
        self.max_position_embeddings = max_position_embeddings
        self.num_attention_heads = num_attention_heads
        self.word_embed_proj_dim = word_embed_proj_dim if word_embed_proj_dim is not None else hidden_size
        self.ffn_dim = ffn_dim
        self.hidden_size = hidden_size
        self.num_hidden_layers = num_hidden_layers
        self.dropout = dropout
        self.attention_dropout = attention_dropout
        self.activation_function = activation_function
        self.init_std = init_std
        self.layerdrop = layerdrop
        self.use_cache = use_cache
        self.do_layer_norm_before = do_layer_norm_before
        # We keep these variables at `True` for backward compatibility.
        self.enable_bias = enable_bias
        self.layer_norm_elementwise_affine = layer_norm_elementwise_affine

        # Note that the only purpose of `_remove_final_layer_norm` is to keep backward compatibility
        # with checkpoints that have been fine-tuned before transformers v4.20.1
        # see https://github.com/facebookresearch/metaseq/pull/164
        self._remove_final_layer_norm = _remove_final_layer_norm