File size: 9,394 Bytes
2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d 2d7b117 1c1d78d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 |
---
library_name: transformers
tags:
- gec
- grammar
language:
- en
metrics:
- accuracy
base_model:
- xlnet/xlnet-large-cased
pipeline_tag: token-classification
---
# Model Card for Model ID
<!-- Provide a quick summary of what the model is/does. -->
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This model is a grammar error correction (GEC) system fine-tuned from the `xlnet/xlnet-large-cased` model, designed to detect and correct grammatical errors in English text. The model focuses on common grammatical mistakes such as verb tense, noun inflection, adjective usage, and more. It is particularly useful for language learners or applications requiring enhanced grammatical precision.
- **Model type:** Token classification with sequence-to-sequence correction
- **Language(s) (NLP):** English
- **Finetuned from model:** `xlnet/xlnet-large-cased`
## Uses
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
### Direct Use
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
This model can be used directly for grammar error detection and correction in English texts. It's ideal for integration into writing assistants, educational software, or proofreading tools.
### Downstream Use
The model can be fine-tuned for specific domains like academic writing, business communication, or informal text correction, ensuring high precision in context-specific grammar errors.
### Out-of-Scope Use
<!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
This model is not suitable for non-English text, non-grammatical corrections (e.g., style, tone, or logic), or detecting complex errors beyond basic grammar structures.
## Bias, Risks, and Limitations
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
The model is trained on general English corpora and may underperform with non-standard dialects (e.g Spoken language), or domain-specific jargon. Users should be cautious when applying it to such contexts, as it might introduce or overlook errors due to the limitations in its training data.
### Recommendations
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
While the model provides strong general performance, users should manually review corrections, especially in specialized or creative contexts where grammar rules can be more fluid.
## How to Get Started with the Model
Use the code below to get started with the model.
Use the following code to get started with the model:
```python
from dataclasses import dataclass
from typing import Optional, Tuple
import torch
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import AutoConfig, AutoTokenizer
from transformers.file_utils import ModelOutput
from transformers.models.xlnet.modeling_xlnet import XLNetModel, XLNetPreTrainedModel
@dataclass
class XGECToROutput(ModelOutput):
"""
Output type of `XGECToRForTokenClassification.forward()`.
loss (`torch.FloatTensor`, optional)
logits_correction (`torch.FloatTensor`) : The correction logits for each token.
logits_detection (`torch.FloatTensor`) : The detection logits for each token.
hidden_states (`Tuple[torch.FloatTensor]`, optional)
attentions (`Tuple[torch.FloatTensor]`, optional)
"""
loss: Optional[torch.FloatTensor] = None
logits_correction: torch.FloatTensor = None
logits_detection: torch.FloatTensor = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
attentions: Optional[Tuple[torch.FloatTensor]] = None
class XGECToRXLNet(XLNetPreTrainedModel):
"""
This class overrides the GECToR model to include an error detection head in addition to the token classification head.
"""
_keys_to_ignore_on_load_unexpected = [r"pooler"]
_keys_to_ignore_on_load_missing = [r"position_ids"]
def __init__(self, config):
super().__init__(config)
self.num_labels = config.num_labels
self.unk_tag_idx = config.label2id.get("@@UNKNOWN@@", None)
self.transformer = XLNetModel(config)
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
if self.unk_tag_idx is not None:
self.error_detector = nn.Linear(config.hidden_size, 3)
else:
self.error_detector = nn.Linear(config.hidden_size, 2)
def forward(
self,
input_ids=None,
attention_mask=None,
token_type_ids=None,
position_ids=None,
inputs_embeds=None,
labels=None,
output_attentions=None,
output_hidden_states=None,
return_dict=None,
):
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
"""
return_dict = (
return_dict if return_dict is not None else self.config.use_return_dict
)
outputs = self.transformer(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
position_ids=position_ids,
inputs_embeds=inputs_embeds,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
return_dict=return_dict,
)
sequence_output = outputs[0]
logits_correction = self.classifier(sequence_output)
logits_detection = self.error_detector(sequence_output)
loss = None
if labels is not None:
loss_fct = CrossEntropyLoss()
loss = loss_fct(
logits_correction.view(-1, self.num_labels), labels.view(-1)
)
labels_detection = torch.ones_like(labels)
labels_detection[labels == 0] = 0
labels_detection[labels == -100] = -100 # ignore padding
if self.unk_tag_idx is not None:
labels_detection[labels == self.unk_tag_idx] = 2
loss_detection = loss_fct(
logits_detection.view(-1, 3), labels_detection.view(-1)
)
else:
loss_detection = loss_fct(
logits_detection.view(-1, 2), labels_detection.view(-1)
)
loss += loss_detection
if not return_dict:
output = (
logits_correction,
logits_detection,
) + outputs[2:]
return ((loss,) + output) if loss is not None else output
return XGECToROutput(
loss=loss,
logits_correction=logits_correction,
logits_detection=logits_detection,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
def get_input_embeddings(self):
return self.transformer.get_input_embeddings()
def set_input_embeddings(self, value):
self.transformer.set_input_embeddings(value)
config = AutoConfig.from_pretrained("manred1997/xlnet-large_lemon-spell_5k")
tokenizer = AutoTokenizer.from_pretrained("manred1997/xlnet-large_lemon-spell_5k")
model = XGECToRXLNet.from_pretrained(
"manred1997/xlnet-large_lemon-spell_5k", config=config
)
```
## Training Details
### Training Data
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
We trained the model in three stages, each requiring specific datasets. Below is a description of the data used in each stage:
| Stage | Dataset(s) Used | Description |
|--------|--------|--------|
| Stage 1| Shuffled 9 million sentences from the PIE corpus (A1 part only) | 9 million shuffled sentences from the PIE corpus, focusing on A1-level sentences. |
| Stage 2| Shuffled combination of NUCLE, FCE, Lang8, W&I + Locness datasets | Lang8 dataset contained 947,344 sentences, with 52.5% having different source and target sentences. |
| | | If using a newer Lang8 dump, consider sampling. | |
| Stage 3| Shuffled version of W&I + Locness datasets | Final shuffled version of the W&I + Locness datasets. |
## Evaluation
<!-- This section describes the evaluation protocols and provides the results. -->
### Testing Data, Factors & Metrics
#### Testing Data
<!-- This should link to a Dataset Card if possible. -->
The model was tested on the W&I + Locness test set, a standard benchmark for grammar error correction.
#### Metrics
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
The primary evaluation metric used was F0.5, measuring the model's ability to identify and fix grammatical errors correctly.
### Results
F0.5 = 72.64 |