manueldeprada
commited on
Commit
·
cd9b4f9
1
Parent(s):
283e3fd
Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: bsd-3-clause-clear
|
3 |
+
datasets:
|
4 |
+
- cnn_dailymail
|
5 |
+
language:
|
6 |
+
- en
|
7 |
+
metrics:
|
8 |
+
- f1
|
9 |
+
---
|
10 |
+
# FactCC factuality prediction model
|
11 |
+
|
12 |
+
Original paper:
|
13 |
+
|
14 |
+
This model is trained to predict whether a summary is factual with respect to the original text. Basic usage:
|
15 |
+
```
|
16 |
+
from transformers import BertForSequenceClassification, BertTokenizer
|
17 |
+
model_path = 'manueldeprada/FactCC'
|
18 |
+
|
19 |
+
tokenizer = BertTokenizer.from_pretrained(model_path)
|
20 |
+
model = BertForSequenceClassification.from_pretrained(model_path)
|
21 |
+
|
22 |
+
text='''The US has "passed the peak" on new coronavirus cases, the White House reported. They predict that some states would reopen this month.
|
23 |
+
The US has over 637,000 confirmed Covid-19 cases and over 30,826 deaths, the highest for any country in the world.'''
|
24 |
+
wrong_summary = '''The pandemic has almost not affected the US'''
|
25 |
+
|
26 |
+
input_dict = tokenizer(text, wrong_summary, max_length=512, padding='max_length', truncation='only_first', return_tensors='pt')
|
27 |
+
logits = model(**input_dict).logits
|
28 |
+
pred = logits.argmax(dim=1)
|
29 |
+
model.config.id2label[pred.item()] # prints: INCORRECT
|
30 |
+
```
|
31 |
+
|
32 |
+
It can also be used with a pipeline. Beware that since pipelines are not thought to be used with pair of sentences, and you have to use this double-list hack:
|
33 |
+
```
|
34 |
+
>>> from transformers import pipeline
|
35 |
+
|
36 |
+
>>> pipe=pipeline(model="manueldeprada/FactCC")
|
37 |
+
>>> pipe([[[text1,summary1]],[[text2,summary2]]],truncation='only_first',padding='max_length')
|
38 |
+
# output [{'label': 'INCORRECT', 'score': 0.9979124665260315}, {'label': 'CORRECT', 'score': 0.879124665260315}]
|
39 |
+
```
|
40 |
+
|
41 |
+
Example on how to perform batched inference to reproduce authors results on the test set:
|
42 |
+
```
|
43 |
+
def batched_FactCC(text_l, summary_l, max_length=512):
|
44 |
+
input_dict = tokenizer(text_l, summary_l, max_length=max_length, padding='max_length', truncation='only_first', return_tensors='pt')
|
45 |
+
with torch.no_grad():
|
46 |
+
logits = model(**input_dict).logits
|
47 |
+
preds = logits.argmax(dim=1)
|
48 |
+
return logits, preds
|
49 |
+
|
50 |
+
texts = []
|
51 |
+
claims = []
|
52 |
+
labels = []
|
53 |
+
with open('factCC/annotated_data/test/data-dev.jsonl', 'r') as file:
|
54 |
+
for line in file:
|
55 |
+
obj = json.loads(line) # Load the JSON data from each line
|
56 |
+
texts.append(obj['text'])
|
57 |
+
claims.append(obj['claim'])
|
58 |
+
labels.append(model.config.label2id[o['label']])
|
59 |
+
|
60 |
+
preds = []
|
61 |
+
batch_size = 8
|
62 |
+
for i in tqdm(range(0, len(texts), batch_size)):
|
63 |
+
batch_texts = texts[i:i+batch_size]
|
64 |
+
batch_claims = claims[i:i+batch_size]
|
65 |
+
_, preds = fact_cc(batch_texts, batch_claims)
|
66 |
+
preds.extend(preds.tolist())
|
67 |
+
|
68 |
+
print(f"F1 micro: {f1_score(labels, preds, average='micro')}")
|
69 |
+
print(f"Balanced accuracy: {balanced_accuracy_score(labels, preds)}")
|
70 |
+
```
|