File size: 2,278 Bytes
8b2478b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 |
---
license: apache-2.0
base_model: google/flan-t5-small
tags:
- generated_from_trainer
datasets:
- samsum
metrics:
- rouge
model-index:
- name: baguette
results:
- task:
name: Sequence-to-sequence Language Modeling
type: text2text-generation
dataset:
name: samsum
type: samsum
config: samsum
split: test
args: samsum
metrics:
- name: Rouge1
type: rouge
value: 42.6891
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# baguette
This model is a fine-tuned version of [google/flan-t5-small](https://huggingface.co/google/flan-t5-small) on the samsum dataset.
It achieves the following results on the evaluation set:
- Loss: 1.6754
- Rouge1: 42.6891
- Rouge2: 18.3323
- Rougel: 35.2966
- Rougelsum: 38.936
- Gen Len: 16.8474
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 52
- eval_batch_size: 52
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:|
| 1.8824 | 0.35 | 100 | 1.7015 | 42.489 | 18.2994 | 35.1094 | 38.8338 | 16.6532 |
| 1.8578 | 0.7 | 200 | 1.6878 | 42.026 | 18.2067 | 34.9977 | 38.5157 | 16.7216 |
| 1.835 | 1.06 | 300 | 1.6823 | 42.7823 | 18.594 | 35.4372 | 38.9901 | 16.9048 |
| 1.8144 | 1.41 | 400 | 1.6786 | 42.6458 | 18.3566 | 35.3547 | 38.9123 | 16.6618 |
| 1.8094 | 1.76 | 500 | 1.6754 | 42.6891 | 18.3323 | 35.2966 | 38.936 | 16.8474 |
### Framework versions
- Transformers 4.36.0
- Pytorch 2.0.0
- Datasets 2.15.0
- Tokenizers 0.15.0
|