marrodion commited on
Commit
04ebcc5
·
verified ·
1 Parent(s): 5b2fb14

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: []
3
+ library_name: sentence-transformers
4
+ tags:
5
+ - sentence-transformers
6
+ - sentence-similarity
7
+ - feature-extraction
8
+ - dataset_size:10K<n<100K
9
+ - loss:CosineSimilarityLoss
10
+ base_model: sentence-transformers/all-MiniLM-L12-v2
11
+ metrics:
12
+ - pearson_cosine
13
+ - spearman_cosine
14
+ - pearson_manhattan
15
+ - spearman_manhattan
16
+ - pearson_euclidean
17
+ - spearman_euclidean
18
+ - pearson_dot
19
+ - spearman_dot
20
+ - pearson_max
21
+ - spearman_max
22
+ widget:
23
+ - source_sentence: How does ZBo do it
24
+ sentences:
25
+ - That s how you do it RYU
26
+ - Calum you need to follow me ok
27
+ - fricken calum follow me im upset
28
+ - source_sentence: Judi was a crazy mf
29
+ sentences:
30
+ - ZBo is a baaad man
31
+ - quel surprise it s the Canucks
32
+ - nope Id buy Candice s and I will
33
+ - source_sentence: ZBo is a baaad man
34
+ sentences:
35
+ - Jeff Green is a BAAAAAAAAADDDDD man
36
+ - Wow RIP Chris from Kriss Kross
37
+ - Vick 32 and shady is 24
38
+ - source_sentence: OH GOD SING IT VEDO
39
+ sentences:
40
+ - Wow wow wow Vedo just killed it
41
+ - It s over on his facebook page
42
+ - Why do I get amber alerts tho
43
+ - source_sentence: ZBo is in top form
44
+ sentences:
45
+ - Miley Cyrus is over the top
46
+ - Hiller flashing the leather eh
47
+ - Im tryin to get to Chicago May 10th
48
+ pipeline_tag: sentence-similarity
49
+ model-index:
50
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
51
+ results:
52
+ - task:
53
+ type: semantic-similarity
54
+ name: Semantic Similarity
55
+ dataset:
56
+ name: semeval 15 dev
57
+ type: semeval-15-dev
58
+ metrics:
59
+ - type: pearson_cosine
60
+ value: 0.6231334838158124
61
+ name: Pearson Cosine
62
+ - type: spearman_cosine
63
+ value: 0.5854181889364861
64
+ name: Spearman Cosine
65
+ - type: pearson_manhattan
66
+ value: 0.6182213570910924
67
+ name: Pearson Manhattan
68
+ - type: spearman_manhattan
69
+ value: 0.583565039468049
70
+ name: Spearman Manhattan
71
+ - type: pearson_euclidean
72
+ value: 0.6202960321095145
73
+ name: Pearson Euclidean
74
+ - type: spearman_euclidean
75
+ value: 0.5854180844045054
76
+ name: Spearman Euclidean
77
+ - type: pearson_dot
78
+ value: 0.6231334928761973
79
+ name: Pearson Dot
80
+ - type: spearman_dot
81
+ value: 0.5854180353346093
82
+ name: Spearman Dot
83
+ - type: pearson_max
84
+ value: 0.6231334928761973
85
+ name: Pearson Max
86
+ - type: spearman_max
87
+ value: 0.5854181889364861
88
+ name: Spearman Max
89
+ ---
90
+
91
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
92
+
93
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
94
+
95
+ ## Model Details
96
+
97
+ ### Model Description
98
+ - **Model Type:** Sentence Transformer
99
+ - **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
100
+ - **Maximum Sequence Length:** 128 tokens
101
+ - **Output Dimensionality:** 384 tokens
102
+ - **Similarity Function:** Cosine Similarity
103
+ <!-- - **Training Dataset:** Unknown -->
104
+ <!-- - **Language:** Unknown -->
105
+ <!-- - **License:** Unknown -->
106
+
107
+ ### Model Sources
108
+
109
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
110
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
111
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
112
+
113
+ ### Full Model Architecture
114
+
115
+ ```
116
+ SentenceTransformer(
117
+ (0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
118
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
119
+ (2): Normalize()
120
+ )
121
+ ```
122
+
123
+ ## Usage
124
+
125
+ ### Direct Usage (Sentence Transformers)
126
+
127
+ First install the Sentence Transformers library:
128
+
129
+ ```bash
130
+ pip install -U sentence-transformers
131
+ ```
132
+
133
+ Then you can load this model and run inference.
134
+ ```python
135
+ from sentence_transformers import SentenceTransformer
136
+
137
+ # Download from the 🤗 Hub
138
+ model = SentenceTransformer("marrodion/minilm-l12-v2-simple")
139
+ # Run inference
140
+ sentences = [
141
+ 'ZBo is in top form',
142
+ 'Miley Cyrus is over the top',
143
+ 'Hiller flashing the leather eh',
144
+ ]
145
+ embeddings = model.encode(sentences)
146
+ print(embeddings.shape)
147
+ # [3, 384]
148
+
149
+ # Get the similarity scores for the embeddings
150
+ similarities = model.similarity(embeddings, embeddings)
151
+ print(similarities.shape)
152
+ # [3, 3]
153
+ ```
154
+
155
+ <!--
156
+ ### Direct Usage (Transformers)
157
+
158
+ <details><summary>Click to see the direct usage in Transformers</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Downstream Usage (Sentence Transformers)
165
+
166
+ You can finetune this model on your own dataset.
167
+
168
+ <details><summary>Click to expand</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Out-of-Scope Use
175
+
176
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
177
+ -->
178
+
179
+ ## Evaluation
180
+
181
+ ### Metrics
182
+
183
+ #### Semantic Similarity
184
+ * Dataset: `semeval-15-dev`
185
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
186
+
187
+ | Metric | Value |
188
+ |:--------------------|:-----------|
189
+ | pearson_cosine | 0.6231 |
190
+ | **spearman_cosine** | **0.5854** |
191
+ | pearson_manhattan | 0.6182 |
192
+ | spearman_manhattan | 0.5836 |
193
+ | pearson_euclidean | 0.6203 |
194
+ | spearman_euclidean | 0.5854 |
195
+ | pearson_dot | 0.6231 |
196
+ | spearman_dot | 0.5854 |
197
+ | pearson_max | 0.6231 |
198
+ | spearman_max | 0.5854 |
199
+
200
+ <!--
201
+ ## Bias, Risks and Limitations
202
+
203
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
204
+ -->
205
+
206
+ <!--
207
+ ### Recommendations
208
+
209
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
210
+ -->
211
+
212
+ ## Training Details
213
+
214
+ ### Training Dataset
215
+
216
+ #### Unnamed Dataset
217
+
218
+
219
+ * Size: 13,063 training samples
220
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
221
+ * Approximate statistics based on the first 1000 samples:
222
+ | | sentence1 | sentence2 | score |
223
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
224
+ | type | string | string | float |
225
+ | details | <ul><li>min: 7 tokens</li><li>mean: 11.16 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.31 tokens</li><li>max: 22 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
226
+ * Samples:
227
+ | sentence1 | sentence2 | score |
228
+ |:------------------------------------------------------|:-------------------------------------------------------------------|:-----------------|
229
+ | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>But my bro from the 757 EJ Manuel is the 1st QB gone</code> | <code>1.0</code> |
230
+ | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>Can believe EJ Manuel went as the 1st QB in the draft</code> | <code>1.0</code> |
231
+ | <code>EJ Manuel the 1st QB to go in this draft</code> | <code>EJ MANUEL IS THE 1ST QB what</code> | <code>0.6</code> |
232
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
233
+ ```json
234
+ {
235
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
236
+ }
237
+ ```
238
+
239
+ ### Evaluation Dataset
240
+
241
+ #### Unnamed Dataset
242
+
243
+
244
+ * Size: 4,727 evaluation samples
245
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
246
+ * Approximate statistics based on the first 1000 samples:
247
+ | | sentence1 | sentence2 | score |
248
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
249
+ | type | string | string | float |
250
+ | details | <ul><li>min: 7 tokens</li><li>mean: 10.04 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 12.22 tokens</li><li>max: 26 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.33</li><li>max: 1.0</li></ul> |
251
+ * Samples:
252
+ | sentence1 | sentence2 | score |
253
+ |:---------------------------------------------------------------|:------------------------------------------------------------------|:-----------------|
254
+ | <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is on and Im in town and Im upset</code> | <code>0.2</code> |
255
+ | <code>A Walk to Remember is the definition of true love</code> | <code>A Walk to Remember is the cutest thing</code> | <code>0.6</code> |
256
+ | <code>A Walk to Remember is the definition of true love</code> | <code>A walk to remember is on ABC family youre welcome</code> | <code>0.2</code> |
257
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
258
+ ```json
259
+ {
260
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
261
+ }
262
+ ```
263
+
264
+ ### Training Hyperparameters
265
+ #### Non-Default Hyperparameters
266
+
267
+ - `eval_strategy`: steps
268
+ - `warmup_ratio`: 0.1
269
+ - `load_best_model_at_end`: True
270
+
271
+ #### All Hyperparameters
272
+ <details><summary>Click to expand</summary>
273
+
274
+ - `overwrite_output_dir`: False
275
+ - `do_predict`: False
276
+ - `eval_strategy`: steps
277
+ - `prediction_loss_only`: True
278
+ - `per_device_train_batch_size`: 8
279
+ - `per_device_eval_batch_size`: 8
280
+ - `per_gpu_train_batch_size`: None
281
+ - `per_gpu_eval_batch_size`: None
282
+ - `gradient_accumulation_steps`: 1
283
+ - `eval_accumulation_steps`: None
284
+ - `learning_rate`: 5e-05
285
+ - `weight_decay`: 0.0
286
+ - `adam_beta1`: 0.9
287
+ - `adam_beta2`: 0.999
288
+ - `adam_epsilon`: 1e-08
289
+ - `max_grad_norm`: 1.0
290
+ - `num_train_epochs`: 3.0
291
+ - `max_steps`: -1
292
+ - `lr_scheduler_type`: linear
293
+ - `lr_scheduler_kwargs`: {}
294
+ - `warmup_ratio`: 0.1
295
+ - `warmup_steps`: 0
296
+ - `log_level`: passive
297
+ - `log_level_replica`: warning
298
+ - `log_on_each_node`: True
299
+ - `logging_nan_inf_filter`: True
300
+ - `save_safetensors`: True
301
+ - `save_on_each_node`: False
302
+ - `save_only_model`: False
303
+ - `restore_callback_states_from_checkpoint`: False
304
+ - `no_cuda`: False
305
+ - `use_cpu`: False
306
+ - `use_mps_device`: False
307
+ - `seed`: 42
308
+ - `data_seed`: None
309
+ - `jit_mode_eval`: False
310
+ - `use_ipex`: False
311
+ - `bf16`: False
312
+ - `fp16`: False
313
+ - `fp16_opt_level`: O1
314
+ - `half_precision_backend`: auto
315
+ - `bf16_full_eval`: False
316
+ - `fp16_full_eval`: False
317
+ - `tf32`: None
318
+ - `local_rank`: 0
319
+ - `ddp_backend`: None
320
+ - `tpu_num_cores`: None
321
+ - `tpu_metrics_debug`: False
322
+ - `debug`: []
323
+ - `dataloader_drop_last`: False
324
+ - `dataloader_num_workers`: 0
325
+ - `dataloader_prefetch_factor`: None
326
+ - `past_index`: -1
327
+ - `disable_tqdm`: False
328
+ - `remove_unused_columns`: True
329
+ - `label_names`: None
330
+ - `load_best_model_at_end`: True
331
+ - `ignore_data_skip`: False
332
+ - `fsdp`: []
333
+ - `fsdp_min_num_params`: 0
334
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
335
+ - `fsdp_transformer_layer_cls_to_wrap`: None
336
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
337
+ - `deepspeed`: None
338
+ - `label_smoothing_factor`: 0.0
339
+ - `optim`: adamw_torch
340
+ - `optim_args`: None
341
+ - `adafactor`: False
342
+ - `group_by_length`: False
343
+ - `length_column_name`: length
344
+ - `ddp_find_unused_parameters`: None
345
+ - `ddp_bucket_cap_mb`: None
346
+ - `ddp_broadcast_buffers`: False
347
+ - `dataloader_pin_memory`: True
348
+ - `dataloader_persistent_workers`: False
349
+ - `skip_memory_metrics`: True
350
+ - `use_legacy_prediction_loop`: False
351
+ - `push_to_hub`: False
352
+ - `resume_from_checkpoint`: None
353
+ - `hub_model_id`: None
354
+ - `hub_strategy`: every_save
355
+ - `hub_private_repo`: False
356
+ - `hub_always_push`: False
357
+ - `gradient_checkpointing`: False
358
+ - `gradient_checkpointing_kwargs`: None
359
+ - `include_inputs_for_metrics`: False
360
+ - `eval_do_concat_batches`: True
361
+ - `fp16_backend`: auto
362
+ - `push_to_hub_model_id`: None
363
+ - `push_to_hub_organization`: None
364
+ - `mp_parameters`:
365
+ - `auto_find_batch_size`: False
366
+ - `full_determinism`: False
367
+ - `torchdynamo`: None
368
+ - `ray_scope`: last
369
+ - `ddp_timeout`: 1800
370
+ - `torch_compile`: False
371
+ - `torch_compile_backend`: None
372
+ - `torch_compile_mode`: None
373
+ - `dispatch_batches`: None
374
+ - `split_batches`: None
375
+ - `include_tokens_per_second`: False
376
+ - `include_num_input_tokens_seen`: False
377
+ - `neftune_noise_alpha`: None
378
+ - `optim_target_modules`: None
379
+ - `batch_eval_metrics`: False
380
+ - `batch_sampler`: batch_sampler
381
+ - `multi_dataset_batch_sampler`: proportional
382
+
383
+ </details>
384
+
385
+ ### Training Logs
386
+ | Epoch | Step | Training Loss | loss | semeval-15-dev_spearman_cosine |
387
+ |:----------:|:--------:|:-------------:|:---------:|:------------------------------:|
388
+ | 0.1837 | 300 | 0.0814 | 0.0718 | 0.5815 |
389
+ | 0.3674 | 600 | 0.0567 | 0.0758 | 0.5458 |
390
+ | 0.5511 | 900 | 0.0566 | 0.0759 | 0.5712 |
391
+ | 0.7348 | 1200 | 0.0499 | 0.0748 | 0.5751 |
392
+ | 0.9186 | 1500 | 0.0477 | 0.0771 | 0.5606 |
393
+ | 1.1023 | 1800 | 0.0391 | 0.0762 | 0.5605 |
394
+ | 1.2860 | 2100 | 0.0304 | 0.0738 | 0.5792 |
395
+ | 1.4697 | 2400 | 0.0293 | 0.0741 | 0.5757 |
396
+ | **1.6534** | **2700** | **0.0317** | **0.072** | **0.5967** |
397
+ | 1.8371 | 3000 | 0.029 | 0.0764 | 0.5640 |
398
+ | 2.0208 | 3300 | 0.0278 | 0.0757 | 0.5674 |
399
+ | 2.2045 | 3600 | 0.0186 | 0.0750 | 0.5723 |
400
+ | 2.3882 | 3900 | 0.0169 | 0.0719 | 0.5864 |
401
+ | 2.5720 | 4200 | 0.0177 | 0.0718 | 0.5905 |
402
+ | 2.7557 | 4500 | 0.0178 | 0.0719 | 0.5888 |
403
+ | 2.9394 | 4800 | 0.0165 | 0.0725 | 0.5854 |
404
+
405
+ * The bold row denotes the saved checkpoint.
406
+
407
+ ### Framework Versions
408
+ - Python: 3.10.14
409
+ - Sentence Transformers: 3.0.0
410
+ - Transformers: 4.41.1
411
+ - PyTorch: 2.3.0
412
+ - Accelerate: 0.30.1
413
+ - Datasets: 2.19.1
414
+ - Tokenizers: 0.19.1
415
+
416
+ ## Citation
417
+
418
+ ### BibTeX
419
+
420
+ #### Sentence Transformers
421
+ ```bibtex
422
+ @inproceedings{reimers-2019-sentence-bert,
423
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
424
+ author = "Reimers, Nils and Gurevych, Iryna",
425
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
426
+ month = "11",
427
+ year = "2019",
428
+ publisher = "Association for Computational Linguistics",
429
+ url = "https://arxiv.org/abs/1908.10084",
430
+ }
431
+ ```
432
+
433
+ <!--
434
+ ## Glossary
435
+
436
+ *Clearly define terms in order to be accessible across audiences.*
437
+ -->
438
+
439
+ <!--
440
+ ## Model Card Authors
441
+
442
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
443
+ -->
444
+
445
+ <!--
446
+ ## Model Card Contact
447
+
448
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
449
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 12,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.41.1",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "2.0.0",
4
+ "transformers": "4.6.1",
5
+ "pytorch": "1.8.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f0068175dbcdcace12dfd99ac000f9c44e922b990dc0bac7f6e23d9a73fd244b
3
+ size 133462128
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 128,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 128,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff