Translation
Davlan commited on
Commit
3dfdd2c
·
verified ·
1 Parent(s): 9fc0c2e

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -6
README.md CHANGED
@@ -32,7 +32,7 @@ language:
32
  license: apache-2.0
33
  ---
34
 
35
- This is a [AfriCOMET-QE-STL (single task)](https://github.com/masakhane-io/africomet) evaluation model: It receives a triplet with (source sentence, translation, reference translation) and returns a score that reflects the quality of the translation compared to both source and reference.
36
 
37
  # Paper
38
 
@@ -54,7 +54,7 @@ pip install unbabel-comet
54
  Then you can use it through comet CLI:
55
 
56
  ```bash
57
- comet-score -s {source-inputs}.txt -t {translation-outputs}.txt -r {references}.txt --model masakhane/africomet-qe-stl
58
  ```
59
 
60
  Or using Python:
@@ -68,12 +68,10 @@ data = [
68
  {
69
  "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
70
  "mt": "Nadal's head to head record against the Canadian is 7–2.",
71
- "ref": "Nadal scored seven unanswered points against Canada."
72
  },
73
  {
74
  "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
75
  "mt": "He recently lost against Raonic in the Brisbane Open.",
76
- "ref": "He recently lost to Raoniki in the game Sisi Brisbeni."
77
  }
78
  ]
79
  model_output = model.predict(data, batch_size=8, gpus=1)
@@ -82,9 +80,9 @@ print (model_output)
82
 
83
  # Intended uses
84
 
85
- Our model is intented to be used for **MT evaluation**.
86
 
87
- Given a a triplet with (source sentence, translation, reference translation) outputs a single score between 0 and 1 where 1 represents a perfect translation.
88
 
89
  # Languages Covered:
90
 
 
32
  license: apache-2.0
33
  ---
34
 
35
+ This is a [AfriCOMET-QE-STL (quality estimation single task)](https://github.com/masakhane-io/africomet) evaluation model: It receives a source sentence, and a translation, and returns a score that reflects the quality of the translation compared to the source.
36
 
37
  # Paper
38
 
 
54
  Then you can use it through comet CLI:
55
 
56
  ```bash
57
+ comet-score -s {source-inputs}.txt -t {translation-outputs}.txt --model masakhane/africomet-qe-stl
58
  ```
59
 
60
  Or using Python:
 
68
  {
69
  "src": "Nadal sàkọọ́lẹ̀ ìforígbárí o ní àmì méje sóódo pẹ̀lú ilẹ̀ Canada.",
70
  "mt": "Nadal's head to head record against the Canadian is 7–2.",
 
71
  },
72
  {
73
  "src": "Laipe yi o padanu si Raoniki ni ere Sisi Brisbeni.",
74
  "mt": "He recently lost against Raonic in the Brisbane Open.",
 
75
  }
76
  ]
77
  model_output = model.predict(data, batch_size=8, gpus=1)
 
80
 
81
  # Intended uses
82
 
83
+ Our model is intented to be used for **MT quality estimation**.
84
 
85
+ Given a source sentence and a translation outputs a single score between 0 and 1 where 1 represents a perfect translation.
86
 
87
  # Languages Covered:
88