End of training
Browse files- README.md +149 -0
- adapter_model.bin +3 -0
README.md
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: peft
|
3 |
+
license: llama3.1
|
4 |
+
base_model: shenzhi-wang/Llama3.1-8B-Chinese-Chat
|
5 |
+
tags:
|
6 |
+
- axolotl
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: tuning-364a1e79-e5ec-4e64-ad45-fd532a9c377e
|
10 |
+
results: []
|
11 |
+
---
|
12 |
+
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
[<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
|
17 |
+
<details><summary>See axolotl config</summary>
|
18 |
+
|
19 |
+
axolotl version: `0.4.1`
|
20 |
+
```yaml
|
21 |
+
adapter: lora
|
22 |
+
base_model: shenzhi-wang/Llama3.1-8B-Chinese-Chat
|
23 |
+
bf16: auto
|
24 |
+
chat_template: llama3
|
25 |
+
dataset_prepared_path: null
|
26 |
+
datasets:
|
27 |
+
- data_files:
|
28 |
+
- alpaca-cleaned_train_data.json
|
29 |
+
ds_type: json
|
30 |
+
path: /workspace/input_data/alpaca-cleaned_train_data.json
|
31 |
+
type:
|
32 |
+
field_input: input
|
33 |
+
field_instruction: instruction
|
34 |
+
field_output: output
|
35 |
+
system_format: '{system}'
|
36 |
+
system_prompt: ''
|
37 |
+
debug: null
|
38 |
+
deepspeed: null
|
39 |
+
early_stopping_patience: null
|
40 |
+
eval_max_new_tokens: 128
|
41 |
+
eval_table_size: null
|
42 |
+
evals_per_epoch: 2
|
43 |
+
flash_attention: true
|
44 |
+
fp16: null
|
45 |
+
fsdp: null
|
46 |
+
fsdp_config: null
|
47 |
+
gradient_accumulation_steps: 8
|
48 |
+
gradient_checkpointing: true
|
49 |
+
group_by_length: false
|
50 |
+
hub_model_id: masatochi/tuning-364a1e79-e5ec-4e64-ad45-fd532a9c377e
|
51 |
+
hub_strategy: checkpoint
|
52 |
+
hub_token: null
|
53 |
+
learning_rate: 0.0002
|
54 |
+
load_in_4bit: false
|
55 |
+
load_in_8bit: true
|
56 |
+
local_rank: null
|
57 |
+
logging_steps: 1
|
58 |
+
lora_alpha: 16
|
59 |
+
lora_dropout: 0.06
|
60 |
+
lora_fan_in_fan_out: null
|
61 |
+
lora_model_dir: null
|
62 |
+
lora_r: 8
|
63 |
+
lora_target_linear: true
|
64 |
+
lr_scheduler: cosine
|
65 |
+
max_steps: 200
|
66 |
+
micro_batch_size: 3
|
67 |
+
mlflow_experiment_name: /tmp/alpaca-cleaned_train_data.json
|
68 |
+
model_type: LlamaForCausalLM
|
69 |
+
num_epochs: 3
|
70 |
+
optimizer: adamw_bnb_8bit
|
71 |
+
output_dir: miner_id_24
|
72 |
+
pad_to_sequence_len: true
|
73 |
+
resume_from_checkpoint: null
|
74 |
+
s2_attention: null
|
75 |
+
sample_packing: false
|
76 |
+
save_steps: 5
|
77 |
+
save_strategy: steps
|
78 |
+
sequence_len: 4096
|
79 |
+
strict: false
|
80 |
+
tf32: false
|
81 |
+
tokenizer_type: AutoTokenizer
|
82 |
+
train_on_inputs: false
|
83 |
+
val_set_size: 0.05
|
84 |
+
wandb_entity: lkotbimehdi
|
85 |
+
wandb_mode: online
|
86 |
+
wandb_project: lko
|
87 |
+
wandb_run: miner_id_24
|
88 |
+
wandb_runid: 364a1e79-e5ec-4e64-ad45-fd532a9c377e
|
89 |
+
warmup_steps: 30
|
90 |
+
weight_decay: 0.0
|
91 |
+
xformers_attention: null
|
92 |
+
|
93 |
+
```
|
94 |
+
|
95 |
+
</details><br>
|
96 |
+
|
97 |
+
# tuning-364a1e79-e5ec-4e64-ad45-fd532a9c377e
|
98 |
+
|
99 |
+
This model is a fine-tuned version of [shenzhi-wang/Llama3.1-8B-Chinese-Chat](https://huggingface.co/shenzhi-wang/Llama3.1-8B-Chinese-Chat) on the None dataset.
|
100 |
+
It achieves the following results on the evaluation set:
|
101 |
+
- Loss: 0.9933
|
102 |
+
|
103 |
+
## Model description
|
104 |
+
|
105 |
+
More information needed
|
106 |
+
|
107 |
+
## Intended uses & limitations
|
108 |
+
|
109 |
+
More information needed
|
110 |
+
|
111 |
+
## Training and evaluation data
|
112 |
+
|
113 |
+
More information needed
|
114 |
+
|
115 |
+
## Training procedure
|
116 |
+
|
117 |
+
### Training hyperparameters
|
118 |
+
|
119 |
+
The following hyperparameters were used during training:
|
120 |
+
- learning_rate: 0.0002
|
121 |
+
- train_batch_size: 3
|
122 |
+
- eval_batch_size: 3
|
123 |
+
- seed: 42
|
124 |
+
- gradient_accumulation_steps: 8
|
125 |
+
- total_train_batch_size: 24
|
126 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
127 |
+
- lr_scheduler_type: cosine
|
128 |
+
- lr_scheduler_warmup_steps: 30
|
129 |
+
- training_steps: 200
|
130 |
+
|
131 |
+
### Training results
|
132 |
+
|
133 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
134 |
+
|:-------------:|:------:|:----:|:---------------:|
|
135 |
+
| 1.2369 | 0.0005 | 1 | 1.3036 |
|
136 |
+
| 1.1428 | 0.0166 | 34 | 1.0232 |
|
137 |
+
| 1.0508 | 0.0333 | 68 | 1.0058 |
|
138 |
+
| 0.9603 | 0.0499 | 102 | 0.9993 |
|
139 |
+
| 1.0164 | 0.0665 | 136 | 0.9951 |
|
140 |
+
| 0.843 | 0.0831 | 170 | 0.9933 |
|
141 |
+
|
142 |
+
|
143 |
+
### Framework versions
|
144 |
+
|
145 |
+
- PEFT 0.13.2
|
146 |
+
- Transformers 4.45.2
|
147 |
+
- Pytorch 2.4.1+cu124
|
148 |
+
- Datasets 3.0.1
|
149 |
+
- Tokenizers 0.20.1
|
adapter_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:890c2b485eab3a2d3deb803e295340f00261f51f99ec7c91af39d8575e1b246f
|
3 |
+
size 84047370
|