File size: 5,805 Bytes
b4426a9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
---
base_model: microsoft/dit-base
tags:
- generated_from_trainer
datasets:
- imagefolder
metrics:
- accuracy
model-index:
- name: dit-base-Classifier_CM05
  results:
  - task:
      name: Image Classification
      type: image-classification
    dataset:
      name: imagefolder
      type: imagefolder
      config: default
      split: train
      args: default
    metrics:
    - name: Accuracy
      type: accuracy
      value: 1.0
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# dit-base-Classifier_CM05

This model is a fine-tuned version of [microsoft/dit-base](https://huggingface.co/microsoft/dit-base) on the imagefolder dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0653
- Accuracy: 1.0
- Weighted f1: 1.0
- Micro f1: 1.0
- Macro f1: 1.0
- Weighted recall: 1.0
- Micro recall: 1.0
- Macro recall: 1.0
- Weighted precision: 1.0
- Micro precision: 1.0
- Macro precision: 1.0

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 18

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy | Weighted f1 | Micro f1 | Macro f1 | Weighted recall | Micro recall | Macro recall | Weighted precision | Micro precision | Macro precision |
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-----------:|:--------:|:--------:|:---------------:|:------------:|:------------:|:------------------:|:---------------:|:---------------:|
| 0.5553        | 1.0   | 1    | 2.7914          | 0.0      | 0.0         | 0.0      | 0.0      | 0.0             | 0.0          | 0.0          | 0.0                | 0.0             | 0.0             |
| 0.5553        | 2.0   | 2    | 2.4681          | 0.0      | 0.0         | 0.0      | 0.0      | 0.0             | 0.0          | 0.0          | 0.0                | 0.0             | 0.0             |
| 0.5553        | 3.0   | 3    | 1.8688          | 0.0      | 0.0         | 0.0      | 0.0      | 0.0             | 0.0          | 0.0          | 0.0                | 0.0             | 0.0             |
| 0.5553        | 4.0   | 4    | 1.3606          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.5553        | 5.0   | 5    | 0.9827          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.5553        | 6.0   | 6    | 0.7992          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.5553        | 7.0   | 7    | 0.5435          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 8.0   | 8    | 0.3466          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 9.0   | 9    | 0.2157          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 10.0  | 10   | 0.1521          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 11.0  | 11   | 0.1251          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 12.0  | 12   | 0.1059          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 13.0  | 13   | 0.0910          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 14.0  | 14   | 0.0807          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.3458        | 15.0  | 15   | 0.0739          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.1206        | 16.0  | 16   | 0.0693          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.1206        | 17.0  | 17   | 0.0666          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |
| 0.1206        | 18.0  | 18   | 0.0653          | 1.0      | 1.0         | 1.0      | 1.0      | 1.0             | 1.0          | 1.0          | 1.0                | 1.0             | 1.0             |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.2
- Tokenizers 0.19.1