matrix2V commited on
Commit
d6ed80f
·
verified ·
1 Parent(s): 6e34fad

Upload image_feature_extraction_pipeline.py

Browse files
Files changed (1) hide show
  1. image_feature_extraction_pipeline.py +112 -0
image_feature_extraction_pipeline.py ADDED
@@ -0,0 +1,112 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from typing import Dict
2
+
3
+ from ..utils import add_end_docstrings, is_vision_available
4
+ from .base import GenericTensor, Pipeline, build_pipeline_init_args
5
+
6
+
7
+ if is_vision_available():
8
+ from ..image_utils import load_image
9
+
10
+
11
+ @add_end_docstrings(
12
+ build_pipeline_init_args(has_image_processor=True),
13
+ """
14
+ image_processor_kwargs (`dict`, *optional*):
15
+ Additional dictionary of keyword arguments passed along to the image processor e.g.
16
+ {"size": {"height": 100, "width": 100}}
17
+ pool (`bool`, *optional*, defaults to `False`):
18
+ Whether or not to return the pooled output. If `False`, the model will return the raw hidden states.
19
+ """,
20
+ )
21
+ class ImageFeatureExtractionPipeline(Pipeline):
22
+ """
23
+ Image feature extraction pipeline uses no model head. This pipeline extracts the hidden states from the base
24
+ transformer, which can be used as features in downstream tasks.
25
+
26
+ Example:
27
+
28
+ ```python
29
+ >>> from transformers import pipeline
30
+
31
+ >>> extractor = pipeline(model="google/vit-base-patch16-224", task="image-feature-extraction")
32
+ >>> result = extractor("https://huggingface.co/datasets/Narsil/image_dummy/raw/main/parrots.png", return_tensors=True)
33
+ >>> result.shape # This is a tensor of shape [1, sequence_lenth, hidden_dimension] representing the input image.
34
+ torch.Size([1, 197, 768])
35
+ ```
36
+
37
+ Learn more about the basics of using a pipeline in the [pipeline tutorial](../pipeline_tutorial)
38
+
39
+ This image feature extraction pipeline can currently be loaded from [`pipeline`] using the task identifier:
40
+ `"image-feature-extraction"`.
41
+
42
+ All vision models may be used for this pipeline. See a list of all models, including community-contributed models on
43
+ [huggingface.co/models](https://huggingface.co/models).
44
+ """
45
+
46
+ def _sanitize_parameters(self, image_processor_kwargs=None, return_tensors=None, pool=None, **kwargs):
47
+ preprocess_params = {} if image_processor_kwargs is None else image_processor_kwargs
48
+
49
+ postprocess_params = {}
50
+ if pool is not None:
51
+ postprocess_params["pool"] = pool
52
+ if return_tensors is not None:
53
+ postprocess_params["return_tensors"] = return_tensors
54
+
55
+ if "timeout" in kwargs:
56
+ preprocess_params["timeout"] = kwargs["timeout"]
57
+
58
+ return preprocess_params, {}, postprocess_params
59
+
60
+ def preprocess(self, image, timeout=None, **image_processor_kwargs) -> Dict[str, GenericTensor]:
61
+ image = load_image(image, timeout=timeout)
62
+ model_inputs = self.image_processor(image, return_tensors=self.framework, **image_processor_kwargs)
63
+ if self.framework == "pt":
64
+ model_inputs = model_inputs.to(self.torch_dtype)
65
+ return model_inputs
66
+
67
+ def _forward(self, model_inputs):
68
+ model_outputs = self.model(**model_inputs)
69
+ return model_outputs
70
+
71
+ def postprocess(self, model_outputs, pool=None, return_tensors=False):
72
+ pool = pool if pool is not None else False
73
+
74
+ if pool:
75
+ if "pooler_output" not in model_outputs:
76
+ raise ValueError(
77
+ "No pooled output was returned. Make sure the model has a `pooler` layer when using the `pool` option."
78
+ )
79
+ outputs = model_outputs["pooler_output"]
80
+ else:
81
+ # [0] is the first available tensor, logits or last_hidden_state.
82
+ outputs = model_outputs[0]
83
+
84
+ if return_tensors:
85
+ return outputs
86
+ if self.framework == "pt":
87
+ return outputs.tolist()
88
+ elif self.framework == "tf":
89
+ return outputs.numpy().tolist()
90
+
91
+ def __call__(self, *args, **kwargs):
92
+ """
93
+ Extract the features of the input(s).
94
+
95
+ Args:
96
+ images (`str`, `List[str]`, `PIL.Image` or `List[PIL.Image]`):
97
+ The pipeline handles three types of images:
98
+
99
+ - A string containing a http link pointing to an image
100
+ - A string containing a local path to an image
101
+ - An image loaded in PIL directly
102
+
103
+ The pipeline accepts either a single image or a batch of images, which must then be passed as a string.
104
+ Images in a batch must all be in the same format: all as http links, all as local paths, or all as PIL
105
+ images.
106
+ timeout (`float`, *optional*, defaults to None):
107
+ The maximum time in seconds to wait for fetching images from the web. If None, no timeout is used and
108
+ the call may block forever.
109
+ Return:
110
+ A nested list of `float`: The features computed by the model.
111
+ """
112
+ return super().__call__(*args, **kwargs)