matthieulel commited on
Commit
d5d514e
·
verified ·
1 Parent(s): f5a2fd8

Model save

Browse files
Files changed (2) hide show
  1. README.md +98 -0
  2. model.safetensors +1 -1
README.md ADDED
@@ -0,0 +1,98 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: microsoft/swinv2-small-patch4-window16-256
4
+ tags:
5
+ - generated_from_trainer
6
+ metrics:
7
+ - accuracy
8
+ - precision
9
+ - recall
10
+ - f1
11
+ model-index:
12
+ - name: swinv2-small-patch4-window16-256-finetuned-galaxy10-decals
13
+ results: []
14
+ ---
15
+
16
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
17
+ should probably proofread and complete it, then remove this comment. -->
18
+
19
+ # swinv2-small-patch4-window16-256-finetuned-galaxy10-decals
20
+
21
+ This model is a fine-tuned version of [microsoft/swinv2-small-patch4-window16-256](https://huggingface.co/microsoft/swinv2-small-patch4-window16-256) on an unknown dataset.
22
+ It achieves the following results on the evaluation set:
23
+ - Loss: 0.4737
24
+ - Accuracy: 0.8489
25
+ - Precision: 0.8486
26
+ - Recall: 0.8489
27
+ - F1: 0.8472
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 5e-05
47
+ - train_batch_size: 64
48
+ - eval_batch_size: 64
49
+ - seed: 42
50
+ - gradient_accumulation_steps: 4
51
+ - total_train_batch_size: 256
52
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
53
+ - lr_scheduler_type: linear
54
+ - lr_scheduler_warmup_ratio: 0.1
55
+ - num_epochs: 30
56
+
57
+ ### Training results
58
+
59
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
60
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:---------:|:------:|:------:|
61
+ | 1.6168 | 0.99 | 62 | 1.3397 | 0.5006 | 0.4880 | 0.5006 | 0.4599 |
62
+ | 0.9396 | 2.0 | 125 | 0.7823 | 0.7463 | 0.7602 | 0.7463 | 0.7410 |
63
+ | 0.782 | 2.99 | 187 | 0.5995 | 0.7948 | 0.7937 | 0.7948 | 0.7885 |
64
+ | 0.6373 | 4.0 | 250 | 0.5227 | 0.8230 | 0.8192 | 0.8230 | 0.8176 |
65
+ | 0.6047 | 4.99 | 312 | 0.5238 | 0.8281 | 0.8272 | 0.8281 | 0.8262 |
66
+ | 0.6143 | 6.0 | 375 | 0.5091 | 0.8348 | 0.8429 | 0.8348 | 0.8298 |
67
+ | 0.5805 | 6.99 | 437 | 0.4921 | 0.8264 | 0.8275 | 0.8264 | 0.8254 |
68
+ | 0.5476 | 8.0 | 500 | 0.4832 | 0.8320 | 0.8409 | 0.8320 | 0.8291 |
69
+ | 0.5333 | 8.99 | 562 | 0.4456 | 0.8501 | 0.8500 | 0.8501 | 0.8477 |
70
+ | 0.5062 | 10.0 | 625 | 0.4493 | 0.8467 | 0.8480 | 0.8467 | 0.8457 |
71
+ | 0.5001 | 10.99 | 687 | 0.4617 | 0.8450 | 0.8468 | 0.8450 | 0.8449 |
72
+ | 0.4572 | 12.0 | 750 | 0.4497 | 0.8467 | 0.8450 | 0.8467 | 0.8449 |
73
+ | 0.4681 | 12.99 | 812 | 0.4588 | 0.8489 | 0.8486 | 0.8489 | 0.8452 |
74
+ | 0.4747 | 14.0 | 875 | 0.4281 | 0.8529 | 0.8554 | 0.8529 | 0.8508 |
75
+ | 0.4283 | 14.99 | 937 | 0.4406 | 0.8602 | 0.8577 | 0.8602 | 0.8585 |
76
+ | 0.4296 | 16.0 | 1000 | 0.4458 | 0.8534 | 0.8512 | 0.8534 | 0.8498 |
77
+ | 0.3734 | 16.99 | 1062 | 0.4623 | 0.8416 | 0.8419 | 0.8416 | 0.8386 |
78
+ | 0.3921 | 18.0 | 1125 | 0.4438 | 0.8517 | 0.8506 | 0.8517 | 0.8496 |
79
+ | 0.3954 | 18.99 | 1187 | 0.4712 | 0.8467 | 0.8487 | 0.8467 | 0.8446 |
80
+ | 0.3995 | 20.0 | 1250 | 0.4648 | 0.8484 | 0.8467 | 0.8484 | 0.8448 |
81
+ | 0.3859 | 20.99 | 1312 | 0.4728 | 0.8495 | 0.8487 | 0.8495 | 0.8462 |
82
+ | 0.4046 | 22.0 | 1375 | 0.4720 | 0.8472 | 0.8467 | 0.8472 | 0.8453 |
83
+ | 0.3651 | 22.99 | 1437 | 0.4837 | 0.8416 | 0.8409 | 0.8416 | 0.8396 |
84
+ | 0.3481 | 24.0 | 1500 | 0.4742 | 0.8540 | 0.8522 | 0.8540 | 0.8524 |
85
+ | 0.3706 | 24.99 | 1562 | 0.4846 | 0.8478 | 0.8477 | 0.8478 | 0.8455 |
86
+ | 0.3278 | 26.0 | 1625 | 0.4798 | 0.8506 | 0.8502 | 0.8506 | 0.8484 |
87
+ | 0.3484 | 26.99 | 1687 | 0.4675 | 0.8529 | 0.8538 | 0.8529 | 0.8520 |
88
+ | 0.3626 | 28.0 | 1750 | 0.4768 | 0.8450 | 0.8446 | 0.8450 | 0.8429 |
89
+ | 0.3324 | 28.99 | 1812 | 0.4725 | 0.8484 | 0.8470 | 0.8484 | 0.8460 |
90
+ | 0.3462 | 29.76 | 1860 | 0.4737 | 0.8489 | 0.8486 | 0.8489 | 0.8472 |
91
+
92
+
93
+ ### Framework versions
94
+
95
+ - Transformers 4.37.2
96
+ - Pytorch 2.3.0
97
+ - Datasets 2.19.1
98
+ - Tokenizers 0.15.1
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:1ba76aed808a6f9a1f02c346f35dd032ef88fb55706e240716ecd6cfde40a0ec
3
  size 195930072
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d607735777dbe68cadf64b5e9e2681208cb3cfa02e64e91a45eba389f7700b17
3
  size 195930072