Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- README.md +216 -0
- llama-3.2-3b-overthinker.Q4_0.gguf +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
llama-3.2-3b-overthinker.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language:
|
3 |
+
- en
|
4 |
+
license: apache-2.0
|
5 |
+
tags:
|
6 |
+
- text-generation-inference
|
7 |
+
- transformers
|
8 |
+
- unsloth
|
9 |
+
- llama
|
10 |
+
- trl
|
11 |
+
- sft
|
12 |
+
base_model: unsloth/llama-3.2-3b-instruct-bnb-4bit
|
13 |
+
datasets:
|
14 |
+
- Lyte/Reasoning-Paused
|
15 |
+
pipeline_tag: text-generation
|
16 |
+
model-index:
|
17 |
+
- name: Llama-3.2-3B-Overthinker
|
18 |
+
results:
|
19 |
+
- task:
|
20 |
+
type: text-generation
|
21 |
+
name: Text Generation
|
22 |
+
dataset:
|
23 |
+
name: IFEval (0-Shot)
|
24 |
+
type: HuggingFaceH4/ifeval
|
25 |
+
args:
|
26 |
+
num_few_shot: 0
|
27 |
+
metrics:
|
28 |
+
- type: inst_level_strict_acc and prompt_level_strict_acc
|
29 |
+
value: 64.08
|
30 |
+
name: strict accuracy
|
31 |
+
source:
|
32 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
|
33 |
+
name: Open LLM Leaderboard
|
34 |
+
- task:
|
35 |
+
type: text-generation
|
36 |
+
name: Text Generation
|
37 |
+
dataset:
|
38 |
+
name: BBH (3-Shot)
|
39 |
+
type: BBH
|
40 |
+
args:
|
41 |
+
num_few_shot: 3
|
42 |
+
metrics:
|
43 |
+
- type: acc_norm
|
44 |
+
value: 20.1
|
45 |
+
name: normalized accuracy
|
46 |
+
source:
|
47 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
|
48 |
+
name: Open LLM Leaderboard
|
49 |
+
- task:
|
50 |
+
type: text-generation
|
51 |
+
name: Text Generation
|
52 |
+
dataset:
|
53 |
+
name: MATH Lvl 5 (4-Shot)
|
54 |
+
type: hendrycks/competition_math
|
55 |
+
args:
|
56 |
+
num_few_shot: 4
|
57 |
+
metrics:
|
58 |
+
- type: exact_match
|
59 |
+
value: 2.64
|
60 |
+
name: exact match
|
61 |
+
source:
|
62 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
|
63 |
+
name: Open LLM Leaderboard
|
64 |
+
- task:
|
65 |
+
type: text-generation
|
66 |
+
name: Text Generation
|
67 |
+
dataset:
|
68 |
+
name: GPQA (0-shot)
|
69 |
+
type: Idavidrein/gpqa
|
70 |
+
args:
|
71 |
+
num_few_shot: 0
|
72 |
+
metrics:
|
73 |
+
- type: acc_norm
|
74 |
+
value: 1.23
|
75 |
+
name: acc_norm
|
76 |
+
source:
|
77 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
|
78 |
+
name: Open LLM Leaderboard
|
79 |
+
- task:
|
80 |
+
type: text-generation
|
81 |
+
name: Text Generation
|
82 |
+
dataset:
|
83 |
+
name: MuSR (0-shot)
|
84 |
+
type: TAUR-Lab/MuSR
|
85 |
+
args:
|
86 |
+
num_few_shot: 0
|
87 |
+
metrics:
|
88 |
+
- type: acc_norm
|
89 |
+
value: 3.9
|
90 |
+
name: acc_norm
|
91 |
+
source:
|
92 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
|
93 |
+
name: Open LLM Leaderboard
|
94 |
+
- task:
|
95 |
+
type: text-generation
|
96 |
+
name: Text Generation
|
97 |
+
dataset:
|
98 |
+
name: MMLU-PRO (5-shot)
|
99 |
+
type: TIGER-Lab/MMLU-Pro
|
100 |
+
config: main
|
101 |
+
split: test
|
102 |
+
args:
|
103 |
+
num_few_shot: 5
|
104 |
+
metrics:
|
105 |
+
- type: acc
|
106 |
+
value: 22.06
|
107 |
+
name: accuracy
|
108 |
+
source:
|
109 |
+
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Lyte/Llama-3.2-3B-Overthinker
|
110 |
+
name: Open LLM Leaderboard
|
111 |
+
---
|
112 |
+
|
113 |
+
|
114 |
+
# Model Overview:
|
115 |
+
|
116 |
+
- **Training Data**: This model was trained on a dataset with columns for initial reasoning, step-by-step thinking, verifications after each step, and final answers based on full context. Is it better than the original base model? Hard to say without proper evaluations, and I don’t have the resources to run them manually.
|
117 |
+
|
118 |
+
- **Context Handling**: The model benefits from larger contexts (minimum 4k up to 16k tokens, though it was trained on 32k tokens). It tends to "overthink," so providing a longer context helps it perform better.
|
119 |
+
|
120 |
+
- **Performance**: Based on my very few manual tests, the model seems to excel in conversational settings—especially for mental health, creative tasks and explaining stuff. However, I encourage you to try it out yourself using this [Colab Notebook](https://colab.research.google.com/drive/1dcBbHAwYJuQJKqdPU570Hddv_F9wzjPO?usp=sharing).
|
121 |
+
|
122 |
+
- **Dataset Note**: The publicly available dataset is only a partial version. The full dataset was originally designed for a custom Mixture of Experts (MoE) architecture, but I couldn't afford to run the full experiment.
|
123 |
+
|
124 |
+
- **Acknowledgment**: Special thanks to KingNish for reigniting my passion to revisit this project. I almost abandoned it after my first attempt a month ago. Enjoy this experimental model!
|
125 |
+
|
126 |
+
# Inference Code:
|
127 |
+
|
128 |
+
- Feel free to make the steps and verifications collapsable and the initial reasoning too, you can show only the final answer to get an o1 feel(i don't know)
|
129 |
+
- **Note:** A feature we have here is the ability to control how many steps and verifications you want.
|
130 |
+
|
131 |
+
```python
|
132 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
133 |
+
|
134 |
+
model_name = "Lyte/Llama-3.2-3B-Overthinker"
|
135 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
136 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype="auto", device_map="auto")
|
137 |
+
|
138 |
+
def generate_response(prompt, max_tokens=16384, temperature=0.8, top_p=0.95, repeat_penalty=1.1, num_steps=3):
|
139 |
+
messages = [{"role": "user", "content": prompt}]
|
140 |
+
|
141 |
+
# Generate reasoning
|
142 |
+
reasoning_template = tokenizer.apply_chat_template(messages, tokenize=False, add_reasoning_prompt=True)
|
143 |
+
reasoning_inputs = tokenizer(reasoning_template, return_tensors="pt").to(model.device)
|
144 |
+
|
145 |
+
reasoning_ids = model.generate(
|
146 |
+
**reasoning_inputs,
|
147 |
+
max_new_tokens=max_tokens // 3,
|
148 |
+
temperature=temperature,
|
149 |
+
top_p=top_p,
|
150 |
+
repetition_penalty=repeat_penalty
|
151 |
+
)
|
152 |
+
reasoning_output = tokenizer.decode(reasoning_ids[0, reasoning_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
153 |
+
|
154 |
+
# Generate thinking (step-by-step and verifications)
|
155 |
+
messages.append({"role": "reasoning", "content": reasoning_output})
|
156 |
+
thinking_template = tokenizer.apply_chat_template(messages, tokenize=False, add_thinking_prompt=True, num_steps=num_steps)
|
157 |
+
thinking_inputs = tokenizer(thinking_template, return_tensors="pt").to(model.device)
|
158 |
+
|
159 |
+
thinking_ids = model.generate(
|
160 |
+
**thinking_inputs,
|
161 |
+
max_new_tokens=max_tokens // 3,
|
162 |
+
temperature=temperature,
|
163 |
+
top_p=top_p,
|
164 |
+
repetition_penalty=repeat_penalty
|
165 |
+
)
|
166 |
+
thinking_output = tokenizer.decode(thinking_ids[0, thinking_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
167 |
+
|
168 |
+
# Generate final answer
|
169 |
+
messages.append({"role": "thinking", "content": thinking_output})
|
170 |
+
answer_template = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
171 |
+
answer_inputs = tokenizer(answer_template, return_tensors="pt").to(model.device)
|
172 |
+
|
173 |
+
answer_ids = model.generate(
|
174 |
+
**answer_inputs,
|
175 |
+
max_new_tokens=max_tokens // 3,
|
176 |
+
temperature=temperature,
|
177 |
+
top_p=top_p,
|
178 |
+
repetition_penalty=repeat_penalty
|
179 |
+
)
|
180 |
+
answer_output = tokenizer.decode(answer_ids[0, answer_inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
181 |
+
return reasoning_output, thinking_output, answer_output
|
182 |
+
|
183 |
+
# Example usage:
|
184 |
+
prompt = "Explain the process of photosynthesis."
|
185 |
+
response = generate_response(prompt, num_steps=5)
|
186 |
+
|
187 |
+
print("Response:", response)
|
188 |
+
```
|
189 |
+
|
190 |
+
# Uploaded model
|
191 |
+
|
192 |
+
- **Developed by:** Lyte
|
193 |
+
- **License:** apache-2.0
|
194 |
+
- **Finetuned from model :** unsloth/llama-3.2-3b-instruct-bnb-4bit
|
195 |
+
|
196 |
+
This llama model was trained 2x faster with [Unsloth](https://github.com/unslothai/unsloth) and Huggingface's TRL library.
|
197 |
+
|
198 |
+
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
199 |
+
|
200 |
+
# Notice:
|
201 |
+
|
202 |
+
- **The problem with runnning evals is that they won't make use of the correct template and it won't be a true eval then would it? so these barely test the model.**
|
203 |
+
|
204 |
+
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
|
205 |
+
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_Lyte__Llama-3.2-3B-Overthinker)
|
206 |
+
|
207 |
+
| Metric |Value|
|
208 |
+
|-------------------|----:|
|
209 |
+
|Avg. |19.00|
|
210 |
+
|IFEval (0-Shot) |64.08|
|
211 |
+
|BBH (3-Shot) |20.10|
|
212 |
+
|MATH Lvl 5 (4-Shot)| 2.64|
|
213 |
+
|GPQA (0-shot) | 1.23|
|
214 |
+
|MuSR (0-shot) | 3.90|
|
215 |
+
|MMLU-PRO (5-shot) |22.06|
|
216 |
+
|
llama-3.2-3b-overthinker.Q4_0.gguf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b0568f9e8a820c6411dcab2b95158241b5b2518c88acc6c240865949905d5b0d
|
3 |
+
size 1917187616
|