mav23 commited on
Commit
d8c5774
·
verified ·
1 Parent(s): de11152

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ h2ogpt-gm-oasst1-en-2048-falcon-40b-v1.Q4_0.gguf filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ library_name: transformers
5
+ tags:
6
+ - gpt
7
+ - llm
8
+ - large language model
9
+ - h2o-llmstudio
10
+ inference: false
11
+ thumbnail: >-
12
+ https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
13
+ license: apache-2.0
14
+ datasets:
15
+ - OpenAssistant/oasst1
16
+ ---
17
+ # Model Card
18
+ ## Summary
19
+
20
+ This model was trained using [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio).
21
+ - Base model: [tiiuae/falcon-40b](https://huggingface.co/tiiuae/falcon-40b)
22
+ - Dataset preparation: [OpenAssistant/oasst1](https://github.com/h2oai/h2o-llmstudio/blob/1935d84d9caafed3ee686ad2733eb02d2abfce57/app_utils/utils.py#LL1896C5-L1896C28)
23
+
24
+
25
+ ## Usage
26
+
27
+ To use the model with the `transformers` library on a machine with GPUs, first make sure you have the `transformers`, `accelerate` and `torch` libraries installed.
28
+
29
+ ```bash
30
+ pip install transformers==4.29.2
31
+ pip install bitsandbytes==0.39.0
32
+ pip install accelerate==0.19.0
33
+ pip install torch==2.0.0
34
+ pip install einops==0.6.1
35
+ ```
36
+
37
+ ```python
38
+ import torch
39
+ from transformers import pipeline, BitsAndBytesConfig, AutoTokenizer
40
+
41
+ model_kwargs = {}
42
+
43
+ quantization_config = None
44
+ # optional quantization
45
+ quantization_config = BitsAndBytesConfig(
46
+ load_in_8bit=True,
47
+ llm_int8_threshold=6.0,
48
+ )
49
+ model_kwargs["quantization_config"] = quantization_config
50
+
51
+ tokenizer = AutoTokenizer.from_pretrained(
52
+ "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
53
+ use_fast=False,
54
+ padding_side="left",
55
+ trust_remote_code=True,
56
+ )
57
+
58
+ generate_text = pipeline(
59
+ model="h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
60
+ tokenizer=tokenizer,
61
+ torch_dtype=torch.float16,
62
+ trust_remote_code=True,
63
+ use_fast=False,
64
+ device_map={"": "cuda:0"},
65
+ model_kwargs=model_kwargs,
66
+ )
67
+
68
+ res = generate_text(
69
+ "Why is drinking water so healthy?",
70
+ min_new_tokens=2,
71
+ max_new_tokens=1024,
72
+ do_sample=False,
73
+ num_beams=1,
74
+ temperature=float(0.3),
75
+ repetition_penalty=float(1.2),
76
+ renormalize_logits=True
77
+ )
78
+ print(res[0]["generated_text"])
79
+ ```
80
+
81
+ You can print a sample prompt after the preprocessing step to see how it is feed to the tokenizer:
82
+
83
+ ```python
84
+ print(generate_text.preprocess("Why is drinking water so healthy?")["prompt_text"])
85
+ ```
86
+
87
+ ```bash
88
+ <|prompt|>Why is drinking water so healthy?<|endoftext|><|answer|>
89
+ ```
90
+
91
+ Alternatively, you can download [h2oai_pipeline.py](h2oai_pipeline.py), store it alongside your notebook, and construct the pipeline yourself from the loaded model and tokenizer:
92
+
93
+ ```python
94
+ import torch
95
+ from h2oai_pipeline import H2OTextGenerationPipeline
96
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
97
+
98
+ quantization_config = None
99
+ # optional quantization
100
+ quantization_config = BitsAndBytesConfig(
101
+ load_in_8bit=True,
102
+ llm_int8_threshold=6.0,
103
+ )
104
+
105
+ tokenizer = AutoTokenizer.from_pretrained(
106
+ "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
107
+ use_fast=False,
108
+ padding_side="left",
109
+ trust_remote_code=True,
110
+ )
111
+ model = AutoModelForCausalLM.from_pretrained(
112
+ "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
113
+ trust_remote_code=True,
114
+ torch_dtype=torch.float16,
115
+ device_map={"": "cuda:0"},
116
+ quantization_config=quantization_config
117
+ ).eval()
118
+ generate_text = H2OTextGenerationPipeline(model=model, tokenizer=tokenizer)
119
+
120
+ res = generate_text(
121
+ "Why is drinking water so healthy?",
122
+ min_new_tokens=2,
123
+ max_new_tokens=1024,
124
+ do_sample=False,
125
+ num_beams=1,
126
+ temperature=float(0.3),
127
+ repetition_penalty=float(1.2),
128
+ renormalize_logits=True
129
+ )
130
+ print(res[0]["generated_text"])
131
+ ```
132
+
133
+
134
+ You may also construct the pipeline from the loaded model and tokenizer yourself and consider the preprocessing steps:
135
+
136
+ ```python
137
+ from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
138
+
139
+ # Important: The prompt needs to be in the same format the model was trained with.
140
+ # You can find an example prompt in the experiment logs.
141
+ prompt = "<|prompt|>How are you?<|endoftext|><|answer|>"
142
+
143
+ quantization_config = None
144
+ # optional quantization
145
+ quantization_config = BitsAndBytesConfig(
146
+ load_in_8bit=True,
147
+ llm_int8_threshold=6.0,
148
+ )
149
+
150
+ tokenizer = AutoTokenizer.from_pretrained(
151
+ "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
152
+ use_fast=False,
153
+ padding_side="left",
154
+ trust_remote_code=True,
155
+ )
156
+ model = AutoModelForCausalLM.from_pretrained(
157
+ "h2oai/h2ogpt-gm-oasst1-en-2048-falcon-40b-v1",
158
+ trust_remote_code=True,
159
+ torch_dtype=torch.float16,
160
+ device_map={"": "cuda:0"},
161
+ quantization_config=quantization_config
162
+ ).eval()
163
+
164
+ inputs = tokenizer(prompt, return_tensors="pt", add_special_tokens=False).to("cuda")
165
+
166
+ # generate configuration can be modified to your needs
167
+ tokens = model.generate(
168
+ **inputs,
169
+ min_new_tokens=2,
170
+ max_new_tokens=1024,
171
+ do_sample=False,
172
+ num_beams=1,
173
+ temperature=float(0.3),
174
+ repetition_penalty=float(1.2),
175
+ renormalize_logits=True
176
+ )[0]
177
+
178
+ tokens = tokens[inputs["input_ids"].shape[1]:]
179
+ answer = tokenizer.decode(tokens, skip_special_tokens=True)
180
+ print(answer)
181
+ ```
182
+
183
+ ## Model Architecture
184
+
185
+ ```
186
+ RWForCausalLM(
187
+ (transformer): RWModel(
188
+ (word_embeddings): Embedding(65024, 8192)
189
+ (h): ModuleList(
190
+ (0-59): 60 x DecoderLayer(
191
+ (ln_attn): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
192
+ (ln_mlp): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
193
+ (self_attention): Attention(
194
+ (maybe_rotary): RotaryEmbedding()
195
+ (query_key_value): Linear(in_features=8192, out_features=9216, bias=False)
196
+ (dense): Linear(in_features=8192, out_features=8192, bias=False)
197
+ (attention_dropout): Dropout(p=0.0, inplace=False)
198
+ )
199
+ (mlp): MLP(
200
+ (dense_h_to_4h): Linear(in_features=8192, out_features=32768, bias=False)
201
+ (act): GELU(approximate='none')
202
+ (dense_4h_to_h): Linear(in_features=32768, out_features=8192, bias=False)
203
+ )
204
+ )
205
+ )
206
+ (ln_f): LayerNorm((8192,), eps=1e-05, elementwise_affine=True)
207
+ )
208
+ (lm_head): Linear(in_features=8192, out_features=65024, bias=False)
209
+ )
210
+ ```
211
+
212
+ ## Model Configuration
213
+
214
+ This model was trained using H2O LLM Studio and with the configuration in [cfg.yaml](cfg.yaml). Visit [H2O LLM Studio](https://github.com/h2oai/h2o-llmstudio) to learn how to train your own large language models.
215
+
216
+ ## Disclaimer
217
+
218
+ Please read this disclaimer carefully before using the large language model provided in this repository. Your use of the model signifies your agreement to the following terms and conditions.
219
+
220
+ - Biases and Offensiveness: The large language model is trained on a diverse range of internet text data, which may contain biased, racist, offensive, or otherwise inappropriate content. By using this model, you acknowledge and accept that the generated content may sometimes exhibit biases or produce content that is offensive or inappropriate. The developers of this repository do not endorse, support, or promote any such content or viewpoints.
221
+ - Limitations: The large language model is an AI-based tool and not a human. It may produce incorrect, nonsensical, or irrelevant responses. It is the user's responsibility to critically evaluate the generated content and use it at their discretion.
222
+ - Use at Your Own Risk: Users of this large language model must assume full responsibility for any consequences that may arise from their use of the tool. The developers and contributors of this repository shall not be held liable for any damages, losses, or harm resulting from the use or misuse of the provided model.
223
+ - Ethical Considerations: Users are encouraged to use the large language model responsibly and ethically. By using this model, you agree not to use it for purposes that promote hate speech, discrimination, harassment, or any form of illegal or harmful activities.
224
+ - Reporting Issues: If you encounter any biased, offensive, or otherwise inappropriate content generated by the large language model, please report it to the repository maintainers through the provided channels. Your feedback will help improve the model and mitigate potential issues.
225
+ - Changes to this Disclaimer: The developers of this repository reserve the right to modify or update this disclaimer at any time without prior notice. It is the user's responsibility to periodically review the disclaimer to stay informed about any changes.
226
+
227
+ By using the large language model provided in this repository, you agree to accept and comply with the terms and conditions outlined in this disclaimer. If you do not agree with any part of this disclaimer, you should refrain from using the model and any content generated by it.
h2ogpt-gm-oasst1-en-2048-falcon-40b-v1.Q4_0.gguf ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fa704ee06944381e8f9716f61b88e3e98326bdb1e2849529538afb483d927ad9
3
+ size 23808203040