File size: 6,048 Bytes
7e1cd2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e9c0b35
 
7e1cd2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: other
base_model: "black-forest-labs/FLUX.1-dev"
tags:
  - flux
  - flux-diffusers
  - text-to-image
  - diffusers
  - simpletuner
  - not-for-all-audiences
  - lora
  - template:sd-lora
  - standard
inference: true
widget:
- text: 'unconditional (blank prompt)'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_0_0.png
- text: 'A peaceful Japanese-inspired scene unfolds, showcasing a cozy retreat nestled in the heart of nature. Towering mountains rise in the distance, framing a serene environment filled with vibrant plants and lush greenery. A calm pond reflects the bright sunlight, its surface adorned with delicate ripples and blooming lotus flowers—where Frog basks on a lily pad, quietly observing the tranquil surroundings. Nearby, a rose garden adds a touch of romance, its soft petals contrasting beautifully with the earthy tones of the environment. Inside the rustic cottage, CRT sitting in calm wearing headphones, adding a hint of nostalgic charm that complements the timeless beauty outside. This setting exudes tranquility, inviting you to pause, breathe, and connect with the harmony of nature—a perfect haven where the natural splendor of Japan landscapes meets cozy serenity.'
  parameters:
    negative_prompt: 'blurry, cropped, ugly'
  output:
    url: ./assets/image_1_0.png
---

# maver1chh/cha_2401

This is a standard PEFT LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev).


The main validation prompt used during training was:
```
A peaceful Japanese-inspired scene unfolds, showcasing a cozy retreat nestled in the heart of nature. Towering mountains rise in the distance, framing a serene environment filled with vibrant plants and lush greenery. A calm pond reflects the bright sunlight, its surface adorned with delicate ripples and blooming lotus flowers—where Frog basks on a lily pad, quietly observing the tranquil surroundings. Nearby, a rose garden adds a touch of romance, its soft petals contrasting beautifully with the earthy tones of the environment. Inside the rustic cottage, CRT sitting in calm wearing headphones, adding a hint of nostalgic charm that complements the timeless beauty outside. This setting exudes tranquility, inviting you to pause, breathe, and connect with the harmony of nature—a perfect haven where the natural splendor of Japan landscapes meets cozy serenity.
```


## Validation settings
- CFG: `3.0`
- CFG Rescale: `0.0`
- Steps: `20`
- Sampler: `FlowMatchEulerDiscreteScheduler`
- Seed: `42`
- Resolution: `1344x768`
- Skip-layer guidance: 

Note: The validation settings are not necessarily the same as the [training settings](#training-settings).

You can find some example images in the following gallery:


<Gallery />

The text encoder **was not** trained.
You may reuse the base model text encoder for inference.


## Training settings

- Training epochs: 23
- Training steps: 12000
- Learning rate: 0.0005
  - Learning rate schedule: polynomial
  - Warmup steps: 200
- Max grad norm: 1.0
- Effective batch size: 1
  - Micro-batch size: 1
  - Gradient accumulation steps: 1
  - Number of GPUs: 1
- Gradient checkpointing: True
- Prediction type: flow-matching (extra parameters=['shift=3', 'flux_guidance_mode=constant', 'flux_guidance_value=1.0', 'flow_matching_loss=compatible', 'flux_lora_target=all'])
- Optimizer: adamw_bf16
- Trainable parameter precision: Pure BF16
- Caption dropout probability: 10.0%


- LoRA Rank: 16
- LoRA Alpha: 16.0
- LoRA Dropout: 0.1
- LoRA initialisation style: default
    

## Datasets

### cha_2401_512
- Repeats: 5
- Total number of images: 43
- Total number of aspect buckets: 1
- Resolution: 0.262144 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No
### cha_2401_768
- Repeats: 5
- Total number of images: 43
- Total number of aspect buckets: 1
- Resolution: 0.589824 megapixels
- Cropped: False
- Crop style: None
- Crop aspect: None
- Used for regularisation data: No


## Inference


```python
import torch
from diffusers import DiffusionPipeline

model_id = 'black-forest-labs/FLUX.1-dev'
adapter_id = 'maver1chh/maver1chh/cha_2401'
pipeline = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16) # loading directly in bf16
pipeline.load_lora_weights(adapter_id)

prompt = "A peaceful Japanese-inspired scene unfolds, showcasing a cozy retreat nestled in the heart of nature. Towering mountains rise in the distance, framing a serene environment filled with vibrant plants and lush greenery. A calm pond reflects the bright sunlight, its surface adorned with delicate ripples and blooming lotus flowers—where Frog basks on a lily pad, quietly observing the tranquil surroundings. Nearby, a rose garden adds a touch of romance, its soft petals contrasting beautifully with the earthy tones of the environment. Inside the rustic cottage, CRT sitting in calm wearing headphones, adding a hint of nostalgic charm that complements the timeless beauty outside. This setting exudes tranquility, inviting you to pause, breathe, and connect with the harmony of nature—a perfect haven where the natural splendor of Japan landscapes meets cozy serenity."


## Optional: quantise the model to save on vram.
## Note: The model was quantised during training, and so it is recommended to do the same during inference time.
from optimum.quanto import quantize, freeze, qint8
quantize(pipeline.transformer, weights=qint8)
freeze(pipeline.transformer)
    
pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') # the pipeline is already in its target precision level
image = pipeline(
    prompt=prompt,
    num_inference_steps=20,
    generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(42),
    width=1344,
    height=768,
    guidance_scale=3.0,
).images[0]
image.save("output.png", format="PNG")
```