File size: 5,573 Bytes
d9ce648 aec468d d9ce648 847c62c d9ce648 847c62c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
---
language:
- en
license: llama3.2
library_name: transformers
base_model:
- meta-llama/Llama-3.2-1B-Instruct
- Llama-3.2-SUN-2.5B-chat
datasets:
- argilla/OpenHermesPreferences
- argilla/magpie-ultra-v0.1
- argilla/Capybara-Preferences-Filtered
- mlabonne/open-perfectblend
- HuggingFaceTB/everyday-conversations-llama3.1-2k
- WizardLMTeam/WizardLM_evol_instruct_V2_196k
- ProlificAI/social-reasoning-rlhf
- allenai/tulu-3-sft-mixture
- allenai/llama-3.1-tulu-3-8b-preference-mixture
pipeline_tag: text-generation
model-index:
- name: Llama-3.2-SUN-1B-Instruct
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 64.13
name: strict accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 9.18
name: normalized accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 4.61
name: exact match
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 0.0
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.05
name: acc_norm
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 8.68
name: accuracy
source:
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=meditsolutions/Llama-3.2-SUN-1B-Instruct
name: Open LLM Leaderboard
---
# MedIT SUN 1B Instruct
<div align="center">
<img src="https://i.ibb.co/PF0TdMJ/imagine-image-9a56cee7-0f4f-4cc2-b265-a5b8d04f266b.png" alt="Llama-3.2-MedIT-SUN-2.5B" style="border-radius: 10px; box-shadow: 0 4px 8px 0 rgba(0, 0, 0, 0.2), 0 6px 20px 0 rgba(0, 0, 0, 0.19); max-width: 100%; height: auto;">
</div>
**Base Model**
- Llama 3.2 1B -> MedIT SUN 2.5B -> MedIT SUN 1B -> Knowledge Injection from Llama 3.1 8B Instruct
**Mesh Size**
- 1B to 2.5B parameters [MedIT SUN 2.5B](https://huggingface.co/meditsolutions/Llama-3.2-SUN-2.5B-chat) -> layers mesh using MedIT-mesh technique and downscaled to 1B
**Extension Method**
- Proprietary technique developed by MedIT Solutions
**Fine-tuning**
- Open (or open subsets allowing for commercial use) open datasets from HF
- Open (or open subsets allowing for commercial use) SFT datasets from HF
**Training Status**
- Current version: instruct-1.0.0
**Key Features**
- Built on Llama 3.2 architecture
- Upscaled from 1B to 2.47B parameters
- Optimized for open-ended conversations
- Incorporates supervised fine-tuning for improved performance
- Layers meshing using the MedIT-mesh technique
- Downscaled to 1B
- Knowledge injection from Llama 3.1 8B Instruct using new technique developed by MedIT Solutions
**Use Case**
- General conversation and task-oriented interactions
**Limitations**
As the model is still in training, performance and capabilities may vary. Users should be aware that the model is not in its final form and may exhibit inconsistencies or limitations typical of in-progress AI models.
**Disclaimer and Safety Considerations**
The Model is designed to be used as a smart assistant but not as a knowledge source within your applications, systems, or environments. It is not intended to provide 100% accurate answers, especially in scenarios where high precision and accuracy are
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_meditsolutions__Llama-3.2-SUN-1B-Instruct)
| Metric |Value|
|-------------------|----:|
|Avg. |15.11|
|IFEval (0-Shot) |64.13|
|BBH (3-Shot) | 9.18|
|MATH Lvl 5 (4-Shot)| 4.61|
|GPQA (0-shot) | 0.00|
|MuSR (0-shot) | 4.05|
|MMLU-PRO (5-shot) | 8.68|
|