first commit
Browse files- .gitattributes +1 -0
- PPO-MlpPolicy-MountainCar-v0.zip +3 -0
- PPO-MlpPolicy-MountainCar-v0/_stable_baselines3_version +1 -0
- PPO-MlpPolicy-MountainCar-v0/data +100 -0
- PPO-MlpPolicy-MountainCar-v0/policy.optimizer.pth +3 -0
- PPO-MlpPolicy-MountainCar-v0/policy.pth +3 -0
- PPO-MlpPolicy-MountainCar-v0/pytorch_variables.pth +3 -0
- PPO-MlpPolicy-MountainCar-v0/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-MlpPolicy-MountainCar-v0.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ada7c73388b44a2261122274dddeb2745caac901b7b4dde34a637f8835e5bcbf
|
3 |
+
size 132432
|
PPO-MlpPolicy-MountainCar-v0/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-MlpPolicy-MountainCar-v0/data
ADDED
@@ -0,0 +1,100 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f73ec103790>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73ec103820>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73ec1038b0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73ec103940>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f73ec1039d0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f73ec103a60>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73ec103af0>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f73ec103b80>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73ec103c10>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73ec103ca0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73ec103d30>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc._abc_data object at 0x7f73ec200180>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {
|
23 |
+
"log_std_init": -2,
|
24 |
+
"ortho_init": false
|
25 |
+
},
|
26 |
+
"observation_space": {
|
27 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
28 |
+
":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
29 |
+
"dtype": "float32",
|
30 |
+
"_shape": [
|
31 |
+
2
|
32 |
+
],
|
33 |
+
"low": "[-1.2 -0.07]",
|
34 |
+
"high": "[0.6 0.07]",
|
35 |
+
"bounded_below": "[ True True]",
|
36 |
+
"bounded_above": "[ True True]",
|
37 |
+
"_np_random": null
|
38 |
+
},
|
39 |
+
"action_space": {
|
40 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
41 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
42 |
+
"n": 3,
|
43 |
+
"_shape": [],
|
44 |
+
"dtype": "int64",
|
45 |
+
"_np_random": null
|
46 |
+
},
|
47 |
+
"n_envs": 16,
|
48 |
+
"num_timesteps": 1015808,
|
49 |
+
"_total_timesteps": 1000000,
|
50 |
+
"_num_timesteps_at_start": 0,
|
51 |
+
"seed": null,
|
52 |
+
"action_noise": null,
|
53 |
+
"start_time": 1653663873.160025,
|
54 |
+
"learning_rate": 0.0003,
|
55 |
+
"tensorboard_log": "runs/2gcltjpv",
|
56 |
+
"lr_schedule": {
|
57 |
+
":type:": "<class 'function'>",
|
58 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
59 |
+
},
|
60 |
+
"_last_obs": {
|
61 |
+
":type:": "<class 'numpy.ndarray'>",
|
62 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAOuU0L8x/ZO/pkjDv1OH1T4HcG6+WiH/PyTRCr+iQ8A/9MQkQIWtmD/0z3a8blqoP8iIy75xVJW/nMvDPzd/cT/PoO++ddCaP82b4D9eRgo/bEu1PpVKHD0gSxk/VUnivn7dnb964HS/YMmRPphdMj5o+CFA3qPdPl3Gwb8ByXA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
63 |
+
},
|
64 |
+
"_last_episode_starts": {
|
65 |
+
":type:": "<class 'numpy.ndarray'>",
|
66 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
67 |
+
},
|
68 |
+
"_last_original_obs": {
|
69 |
+
":type:": "<class 'numpy.ndarray'>",
|
70 |
+
":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAADpXE78AAAAAAUTxvgAAAAACEf++AAAAAPmHB78AAAAAZ2QIvwAAAAAAghe/AAAAALjP5b4AAAAALfQBvwAAAACbEg+/AAAAAD8lBr8AAAAAzm/fvgAAAACA9Pi+AAAAAFbS4r4AAAAAjfz1vgAAAADepty+AAAAAG536b4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="
|
71 |
+
},
|
72 |
+
"_episode_num": 0,
|
73 |
+
"use_sde": false,
|
74 |
+
"sde_sample_freq": -1,
|
75 |
+
"_current_progress_remaining": -0.015808000000000044,
|
76 |
+
"ep_info_buffer": {
|
77 |
+
":type:": "<class 'collections.deque'>",
|
78 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFdAAAAAAACMAWyUS12MAXSUR0CU5RUPQOWjdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5R9Cu2ZzdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5SH+ZPVNdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5SU5+6RRdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5SwTufEodX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5Tb1yvLYdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0CU5TnPE87qdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5Uy+HrQgdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU5U5H3DekdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0CU5VnPmgandX2UKGgGR8BXQAAAAAAAaAdLXWgIR0CU5V4YJmdzdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CU5XjLSuyNdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5X6r/82rdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5X2zv7WNdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU5YHrhR64dX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CU5ZIpH7P6dX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5ZmUW2w3dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CU5aj9n9NvdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5bKlHjIadX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5bX7+DODdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CU5b3N9ph4dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5bsNUfgadX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5cnYxtYTdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5dy7PIGRdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU5fOVxCIDdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5fVsDW9UdX2UKGgGR8BWwAAAAAAAaAdLW2gIR0CU5fnssxwidX2UKGgGR8BZgAAAAAAAaAdLZmgIR0CU5glv60pmdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5gr9l2/0dX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU5g8IAwPAdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CU5hk1Mue0dX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CU5hokzGgjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5iYUFjd6dX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU5iXVsk6cdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU5ieyRjjJdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5kRTS9dvdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5klHBk7PdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5lNBnjABdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5l9m6GxmdX2UKGgGR8BZwAAAAAAAaAdLZ2gIR0CU5maOxSpBdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CU5nhDgIhRdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5n+dsi0OdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5oVQyhzvdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5oUPQOWjdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5pNW2gFpdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0CU5pSE12q2dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0CU5psmOU+tdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5pq4H5aedX2UKGgGR8BZgAAAAAAAaAdLZmgIR0CU5p/336AOdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5rUcGTs6dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CU5rUg0TDgdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5rbKRuCPdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0CU5twCbMHKdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5tmBvrGBdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5uTWoWHldX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5u4nF5v+dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0CU5v08/2TQdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5w22G7BgdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5wxDst03dX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5xLpzLfUdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0CU5xrHU+cIdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5yXC0ngHdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5yWLP2PDdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5yknCwbEdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5ytkWhysdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0CU5zIbOu7pdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU5z690zTGdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU50ZFocrBdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU52hF3IMjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU52glnh86dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU53UrCm/GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU54Jw84gidX2UKGgGR8BXQAAAAAAAaAdLXWgIR0CU54UmD15CdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU54Wz4UN8dX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU55VDa4+bdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU55oVVPvbdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU55+mm+CcdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0CU56Sm65G0dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU56c1fmcOdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU568tf5UMdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU57MpgCwKdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU57VnVXmvdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU58XZGrjpdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0CU58iyY5T7dX2UKGgGR8BXwAAAAAAAaAdLX2gIR0CU5+OqebuudX2UKGgGR8BXgAAAAAAAaAdLXmgIR0CU5/dyT6i1dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5/SBK+SKdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU6AsD4gzQdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU6BTjvNNbdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU6BMCtA9ndX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU6BQrMC9zdX2UKGgGR8BYwAAAAAAAaAdLY2gIR0CU6BoPCl7/dX2UKGgGR8BXAAAAAAAAaAdLXGgIR0CU6CDrJKaodX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU6CaKk2xZdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0CU6C8a4tpVdX2UKGgGR8BZwAAAAAAAaAdLZ2gIR0CU6DDhcZ+AdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU6D7EpAlfdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU6Eb1RLsbdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU6FSXt0FKdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU6FUR3/xUdWUu"
|
79 |
+
},
|
80 |
+
"ep_success_buffer": {
|
81 |
+
":type:": "<class 'collections.deque'>",
|
82 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
83 |
+
},
|
84 |
+
"_n_updates": 124,
|
85 |
+
"n_steps": 2048,
|
86 |
+
"gamma": 0.99,
|
87 |
+
"gae_lambda": 0.98,
|
88 |
+
"ent_coef": 0.0,
|
89 |
+
"vf_coef": 0.5,
|
90 |
+
"max_grad_norm": 0.5,
|
91 |
+
"batch_size": 64,
|
92 |
+
"n_epochs": 4,
|
93 |
+
"clip_range": {
|
94 |
+
":type:": "<class 'function'>",
|
95 |
+
":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="
|
96 |
+
},
|
97 |
+
"clip_range_vf": null,
|
98 |
+
"normalize_advantage": true,
|
99 |
+
"target_kl": null
|
100 |
+
}
|
PPO-MlpPolicy-MountainCar-v0/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:469253ab88ff9cbc58c1edefbcd6f868db3d861ee83aab9cb03b574f2972ca6e
|
3 |
+
size 78173
|
PPO-MlpPolicy-MountainCar-v0/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:32516a4d0a14d20bded8ded0a584e32af6c44b820135722f77f55f539dfed09f
|
3 |
+
size 39873
|
PPO-MlpPolicy-MountainCar-v0/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-MlpPolicy-MountainCar-v0/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021
|
2 |
+
Python: 3.9.12
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu102
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.22.3
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- MountainCar-v0
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: -200.00 +/- 0.00
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: MountainCar-v0
|
20 |
+
type: MountainCar-v0
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **MountainCar-v0**
|
24 |
+
This is a trained model of a **PPO** agent playing **MountainCar-v0** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f73ec103790>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f73ec103820>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f73ec1038b0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f73ec103940>", "_build": "<function ActorCriticPolicy._build at 0x7f73ec1039d0>", "forward": "<function ActorCriticPolicy.forward at 0x7f73ec103a60>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f73ec103af0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f73ec103b80>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f73ec103c10>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f73ec103ca0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f73ec103d30>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f73ec200180>"}, "verbose": 1, "policy_kwargs": {"log_std_init": -2, "ortho_init": false}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVYwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLAoWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAACamZm/KVyPvZRoCksChZSMAUOUdJRSlIwEaGlnaJRoEiiWCAAAAAAAAACamRk/KVyPPZRoCksChZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolgIAAAAAAAAAAQGUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAoWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYCAAAAAAAAAAEBlGghSwKFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [2], "low": "[-1.2 -0.07]", "high": "[0.6 0.07]", "bounded_below": "[ True True]", "bounded_above": "[ True True]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLA4wGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 3, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1653663873.160025, "learning_rate": 0.0003, "tensorboard_log": "runs/2gcltjpv", "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHPzOpKjBVMmGFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAAOuU0L8x/ZO/pkjDv1OH1T4HcG6+WiH/PyTRCr+iQ8A/9MQkQIWtmD/0z3a8blqoP8iIy75xVJW/nMvDPzd/cT/PoO++ddCaP82b4D9eRgo/bEu1PpVKHD0gSxk/VUnivn7dnb964HS/YMmRPphdMj5o+CFA3qPdPl3Gwb8ByXA+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaAAAAAAAAAADpXE78AAAAAAUTxvgAAAAACEf++AAAAAPmHB78AAAAAZ2QIvwAAAAAAghe/AAAAALjP5b4AAAAALfQBvwAAAACbEg+/AAAAAD8lBr8AAAAAzm/fvgAAAACA9Pi+AAAAAFbS4r4AAAAAjfz1vgAAAADepty+AAAAAG536b4AAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwKGlIwBQ5R0lFKULg=="}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFdAAAAAAACMAWyUS12MAXSUR0CU5RUPQOWjdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5R9Cu2ZzdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5SH+ZPVNdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5SU5+6RRdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5SwTufEodX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5Tb1yvLYdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0CU5TnPE87qdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5Uy+HrQgdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU5U5H3DekdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0CU5VnPmgandX2UKGgGR8BXQAAAAAAAaAdLXWgIR0CU5V4YJmdzdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CU5XjLSuyNdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5X6r/82rdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5X2zv7WNdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU5YHrhR64dX2UKGgGR8BVwAAAAAAAaAdLV2gIR0CU5ZIpH7P6dX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5ZmUW2w3dX2UKGgGR8BcQAAAAAAAaAdLcWgIR0CU5aj9n9NvdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5bKlHjIadX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5bX7+DODdX2UKGgGR8BVAAAAAAAAaAdLVGgIR0CU5b3N9ph4dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5bsNUfgadX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5cnYxtYTdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5dy7PIGRdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU5fOVxCIDdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5fVsDW9UdX2UKGgGR8BWwAAAAAAAaAdLW2gIR0CU5fnssxwidX2UKGgGR8BZgAAAAAAAaAdLZmgIR0CU5glv60pmdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5gr9l2/0dX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU5g8IAwPAdX2UKGgGR8BkwAAAAAAAaAdLpmgIR0CU5hk1Mue0dX2UKGgGR8BUwAAAAAAAaAdLU2gIR0CU5hokzGgjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5iYUFjd6dX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU5iXVsk6cdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU5ieyRjjJdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5kRTS9dvdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5klHBk7PdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5lNBnjABdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5l9m6GxmdX2UKGgGR8BZwAAAAAAAaAdLZ2gIR0CU5maOxSpBdX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CU5nhDgIhRdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5n+dsi0OdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5oVQyhzvdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5oUPQOWjdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5pNW2gFpdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0CU5pSE12q2dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0CU5psmOU+tdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5pq4H5aedX2UKGgGR8BZgAAAAAAAaAdLZmgIR0CU5p/336AOdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5rUcGTs6dX2UKGgGR8BVQAAAAAAAaAdLVWgIR0CU5rUg0TDgdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5rbKRuCPdX2UKGgGR8BWAAAAAAAAaAdLWGgIR0CU5twCbMHKdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5tmBvrGBdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5uTWoWHldX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU5u4nF5v+dX2UKGgGR8BWQAAAAAAAaAdLWWgIR0CU5v08/2TQdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU5w22G7BgdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5wxDst03dX2UKGgGR8BagAAAAAAAaAdLamgIR0CU5xLpzLfUdX2UKGgGR8BYAAAAAAAAaAdLYGgIR0CU5xrHU+cIdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU5yXC0ngHdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5yWLP2PDdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU5yknCwbEdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU5ytkWhysdX2UKGgGR8BXgAAAAAAAaAdLXmgIR0CU5zIbOu7pdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU5z690zTGdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU50ZFocrBdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU52hF3IMjdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU52glnh86dX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU53UrCm/GdX2UKGgGR8BbwAAAAAAAaAdLb2gIR0CU54Jw84gidX2UKGgGR8BXQAAAAAAAaAdLXWgIR0CU54UmD15CdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU54Wz4UN8dX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU55VDa4+bdX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU55oVVPvbdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU55+mm+CcdX2UKGgGR8BWQAAAAAAAaAdLWWgIR0CU56Sm65G0dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU56c1fmcOdX2UKGgGR8BaAAAAAAAAaAdLaGgIR0CU568tf5UMdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU57MpgCwKdX2UKGgGR8BcAAAAAAAAaAdLcGgIR0CU57VnVXmvdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU58XZGrjpdX2UKGgGR8BZQAAAAAAAaAdLZWgIR0CU58iyY5T7dX2UKGgGR8BXwAAAAAAAaAdLX2gIR0CU5+OqebuudX2UKGgGR8BXgAAAAAAAaAdLXmgIR0CU5/dyT6i1dX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU5/SBK+SKdX2UKGgGR8BbgAAAAAAAaAdLbmgIR0CU6AsD4gzQdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU6BTjvNNbdX2UKGgGR8BagAAAAAAAaAdLamgIR0CU6BMCtA9ndX2UKGgGR8BVgAAAAAAAaAdLVmgIR0CU6BQrMC9zdX2UKGgGR8BYwAAAAAAAaAdLY2gIR0CU6BoPCl7/dX2UKGgGR8BXAAAAAAAAaAdLXGgIR0CU6CDrJKaodX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU6CaKk2xZdX2UKGgGR8BXAAAAAAAAaAdLXGgIR0CU6C8a4tpVdX2UKGgGR8BZwAAAAAAAaAdLZ2gIR0CU6DDhcZ+AdX2UKGgGR8BbAAAAAAAAaAdLbGgIR0CU6D7EpAlfdX2UKGgGR8BbQAAAAAAAaAdLbWgIR0CU6Eb1RLsbdX2UKGgGR8BawAAAAAAAaAdLa2gIR0CU6FSXt0FKdX2UKGgGR8BaQAAAAAAAaAdLaWgIR0CU6FUR3/xUdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.98, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWV9wIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuAQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGMvaG9tZS9ubS9hbmFjb25kYTMvZW52cy9kZWVwLXJsLWNsYXNzL2xpYi9weXRob24zLjkvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoIH2UfZQoaBdoDowMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBiMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP8mZmZmZmZqFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.11.0-38-generic-x86_64-with-glibc2.31 #42~20.04.1-Ubuntu SMP Tue Sep 28 20:41:07 UTC 2021", "Python": "3.9.12", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu102", "GPU Enabled": "True", "Numpy": "1.22.3", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff0f579825d058ff32bbca8dfab81599fbf41d75670da524ee33d3e41470098b
|
3 |
+
size 202509
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": -200.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-27T17:58:45.680251"}
|