dan
commited on
Commit
·
936444c
1
Parent(s):
03b9b40
init
Browse files- .gitattributes +1 -0
- PPO-baseline-steps-2048000.zip +3 -0
- PPO-baseline-steps-2048000/_stable_baselines3_version +1 -0
- PPO-baseline-steps-2048000/data +94 -0
- PPO-baseline-steps-2048000/policy.optimizer.pth +3 -0
- PPO-baseline-steps-2048000/policy.pth +3 -0
- PPO-baseline-steps-2048000/pytorch_variables.pth +3 -0
- PPO-baseline-steps-2048000/system_info.txt +7 -0
- README.md +28 -0
- config.json +1 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
PPO-baseline-steps-2048000.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:746f18fa5d5b29883eb296252107ba84b818ce5830634b1178d8e5a27597d755
|
3 |
+
size 143984
|
PPO-baseline-steps-2048000/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
PPO-baseline-steps-2048000/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f97880880e0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9788088170>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9788088200>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9788088290>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f9788088320>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f97880883b0>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9788088440>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f97880884d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9788088560>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97880885f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9788088680>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f97880d3960>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 2048000,
|
46 |
+
"_total_timesteps": 2048000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1652212308.5209534,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbasD0by78/g4OcPtOtUL4qv+A9Kyj4PQAAAAAAAAAAANmEPCjntz+zqIo+u5r/Pe4HM7yCl/28AAAAAAAAAABmfhW8j8JfunOp2zT14iAwvNAdO3s3JbQAAIA/AACAPzM7tD2Xj2c+bpIRvhAaV74sJFa947d8PAAAAAAAAAAAZuuRPbqivT/WLpQ+e7gNvl+gbz2YVDg+AAAAAAAAAAAzmy+8rtfVugpEQrvFuKY7ij93uz1DojwAAIA/AACAP5pRdb2uCZW6J0I+uimAgbat2KS6nZxcOQAAgD8AAIA/pkdePnESQD/Vn2m9YBDavuJUTj6J8RK+AAAAAAAAAABNEDC9mXKCP/h33TwpX+e+a/zzvY7zRT0AAAAAAAAAADO7WTu2hX68g1J7u4HcJzzxfvI98cUOvQAAgD8AAIA/AJgJvXx/eT4TovU99MW9vi74vT1+u4s8AAAAAAAAAADzxhK+3IvxPp5syz692OC+wFbZPZOu8z0AAAAAAAAAAIAYND62CM8+z2IKv73Fk74inq89LpnJvgAAAAAAAAAAM7GTvZP3oD8zpA6/J3spv+sKGL3rLHW+AAAAAAAAAACaMO48+zGSPfWm970Jciu+rL2avF1NhDsAAAAAAAAAADMPizvRnM49WEhgPRsljb4NlxM+Q9DOvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": 0.0,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWyIXnMEjM0CUhpRSlIwBbJRLu4wBdJRHQKXzxHQQcxV1fZQoaAZoCWgPQwi2hlJ7UWxyQJSGlFKUaBVL/mgWR0Cl89crAgxKdX2UKGgGaAloD0MIurpjsY1TcUCUhpRSlGgVS9loFkdApfRCgRK6F3V9lChoBmgJaA9DCMk5sYc2/nFAlIaUUpRoFUvxaBZHQKX0fiJfpll1fZQoaAZoCWgPQwgrGJXUCb5yQJSGlFKUaBVL92gWR0Cl9IQ9A5aNdX2UKGgGaAloD0MIxLMEGQELb0CUhpRSlGgVS+poFkdApfSfmeUY9HV9lChoBmgJaA9DCNwvn6yYNW5AlIaUUpRoFUvfaBZHQKX1J/+bVjJ1fZQoaAZoCWgPQwhuh4bFqBdwQJSGlFKUaBVL2mgWR0Cl9TbuUliSdX2UKGgGaAloD0MIeSEdHgK+ckCUhpRSlGgVS+ZoFkdApfVlGAkLQXV9lChoBmgJaA9DCOW5vg8Hg25AlIaUUpRoFU0WAWgWR0Cl9WiKBNEgdX2UKGgGaAloD0MIFCAKZkwKb0CUhpRSlGgVS9toFkdApfV2iN83M3V9lChoBmgJaA9DCPwbtFefOXFAlIaUUpRoFUvlaBZHQKX1uAvL5h11fZQoaAZoCWgPQwj8brplx6BwQJSGlFKUaBVL0GgWR0Cl9bgi3XqadX2UKGgGaAloD0MIbQGh9XAbckCUhpRSlGgVTR8BaBZHQKX2C0Nz8xd1fZQoaAZoCWgPQwhcr+lBAQFyQJSGlFKUaBVL/GgWR0Cl9k2mgrYodX2UKGgGaAloD0MIeLgdGhazcUCUhpRSlGgVS/9oFkdApfZoQnQY13V9lChoBmgJaA9DCDy858DyLXNAlIaUUpRoFUvdaBZHQKX2bYcvM8p1fZQoaAZoCWgPQwiWCiqq/rJyQJSGlFKUaBVLzmgWR0Cl9r5rpJPJdX2UKGgGaAloD0MIRidLrXdhcECUhpRSlGgVS/toFkdApfbaJ66as3V9lChoBmgJaA9DCGhdo+VACnFAlIaUUpRoFUvSaBZHQKX3IfuCwr11fZQoaAZoCWgPQwj0GOWZV6FxQJSGlFKUaBVL5WgWR0Cl9zwUQCjldX2UKGgGaAloD0MIzas6q8UzcUCUhpRSlGgVS/doFkdApfd3f2saKnV9lChoBmgJaA9DCBsuck+Xs3FAlIaUUpRoFUvZaBZHQKX3tIikftB1fZQoaAZoCWgPQwi0AG2rGYByQJSGlFKUaBVL32gWR0Cl99O7xusLdX2UKGgGaAloD0MInfF9cWm4cECUhpRSlGgVS+doFkdApfgQpF1B+nV9lChoBmgJaA9DCE4On3QiUHFAlIaUUpRoFUvraBZHQKX4K7Qswtd1fZQoaAZoCWgPQwhUVz7Ls3pxQJSGlFKUaBVL92gWR0Cl+EJz1bqydX2UKGgGaAloD0MIRnu8kI7QcUCUhpRSlGgVS/xoFkdApfin2wmmcnV9lChoBmgJaA9DCLN5HAazkXFAlIaUUpRoFUv+aBZHQKX4rwPRRdh1fZQoaAZoCWgPQwhKfVna6bpxQJSGlFKUaBVL02gWR0CmAkPpIMBqdX2UKGgGaAloD0MIsfojDIN4cUCUhpRSlGgVS+poFkdApgJznvDxb3V9lChoBmgJaA9DCNI6qpqgSnFAlIaUUpRoFU0XAWgWR0CmAr58jRlZdX2UKGgGaAloD0MIb59VZkpDS0CUhpRSlGgVS79oFkdApgLIumJm/XV9lChoBmgJaA9DCGVQbXCiJHJAlIaUUpRoFUvXaBZHQKYCzOJtSAJ1fZQoaAZoCWgPQwjCGJEoNFNzQJSGlFKUaBVL7GgWR0CmAuzundftdX2UKGgGaAloD0MIPGh23VvccUCUhpRSlGgVTQgBaBZHQKYC8GorFwV1fZQoaAZoCWgPQwgSE9TwLdtuQJSGlFKUaBVL8mgWR0CmA2TfBN21dX2UKGgGaAloD0MImnlyTUFDcUCUhpRSlGgVS91oFkdApgO8sz2vjnV9lChoBmgJaA9DCKzj+KES7nJAlIaUUpRoFUvOaBZHQKYD6UHIIWx1fZQoaAZoCWgPQwhStd0En4xxQJSGlFKUaBVNEAFoFkdApgPyemNzbXV9lChoBmgJaA9DCGZJgJoafHNAlIaUUpRoFUvJaBZHQKYD8S7GvOh1fZQoaAZoCWgPQwhz2lNyjgdzQJSGlFKUaBVL32gWR0CmA/8U21lYdX2UKGgGaAloD0MIgpAsYIKFcUCUhpRSlGgVTQYBaBZHQKYED0DEFW51fZQoaAZoCWgPQwhKl/4lqaVxQJSGlFKUaBVL4GgWR0CmBItfgJkYdX2UKGgGaAloD0MItFVJZN91cUCUhpRSlGgVS9VoFkdApgShFuvU0HV9lChoBmgJaA9DCHPXEvKBP3FAlIaUUpRoFUvZaBZHQKYFMiyIHkd1fZQoaAZoCWgPQwghHR7CeB1tQJSGlFKUaBVL3GgWR0CmBTJQ+EAYdX2UKGgGaAloD0MIc4V3uQjRcECUhpRSlGgVS/toFkdApgVPUDuBtnV9lChoBmgJaA9DCHtMpDQbA3FAlIaUUpRoFUvmaBZHQKYFXpqynk11fZQoaAZoCWgPQwiMEB5tnChtQJSGlFKUaBVL3WgWR0CmBWjr7fpEdX2UKGgGaAloD0MIWi4bnbMmcECUhpRSlGgVTQEBaBZHQKYF0DJ2dNF1fZQoaAZoCWgPQwixiGGHMS5wQJSGlFKUaBVL8mgWR0CmBjLnTy8SdX2UKGgGaAloD0MIk3Ahj2Dkc0CUhpRSlGgVS8toFkdApgZUs+V1OnV9lChoBmgJaA9DCFYqqKh6b29AlIaUUpRoFUvvaBZHQKYGi9Oh0yR1fZQoaAZoCWgPQwiHakqyzlJzQJSGlFKUaBVL1GgWR0CmBpZd4VyndX2UKGgGaAloD0MIHxK+9/ewcUCUhpRSlGgVS+loFkdApgaqRMewLXV9lChoBmgJaA9DCGGKcmk853FAlIaUUpRoFUvfaBZHQKYGo+r2g391fZQoaAZoCWgPQwg42nHDb3dwQJSGlFKUaBVL9mgWR0CmBte6RQrMdX2UKGgGaAloD0MIJ/kRv+LCcECUhpRSlGgVS+BoFkdApgc8QEpy63V9lChoBmgJaA9DCC3Pg7uzXHFAlIaUUpRoFUvlaBZHQKYHYFM7EHd1fZQoaAZoCWgPQwjusInM3FxxQJSGlFKUaBVL0GgWR0CmB6LQHAymdX2UKGgGaAloD0MI6GuWy0Z6ckCUhpRSlGgVS9JoFkdApgenRmbsnnV9lChoBmgJaA9DCF9+p8kMBHJAlIaUUpRoFU0DAmgWR0CmB/ZPdl/ZdX2UKGgGaAloD0MIgPEMGvogckCUhpRSlGgVS+1oFkdApggPJgb6xnV9lChoBmgJaA9DCJrQJLEkzHNAlIaUUpRoFUvpaBZHQKYIHE9+w1R1fZQoaAZoCWgPQwjAJQD/FOJyQJSGlFKUaBVNBgFoFkdApghjpu/DcnV9lChoBmgJaA9DCEEpWrkX1XFAlIaUUpRoFUvkaBZHQKYIcKLKmsN1fZQoaAZoCWgPQwgDXfsCOjFxQJSGlFKUaBVL5WgWR0CmCNWeHzpYdX2UKGgGaAloD0MIMnIW9rQmbUCUhpRSlGgVS+VoFkdApgj4LThHb3V9lChoBmgJaA9DCE3WqIeo+XFAlIaUUpRoFUvlaBZHQKYJRzasZHd1fZQoaAZoCWgPQwhwzR39r69yQJSGlFKUaBVL82gWR0CmCVrs8gZCdX2UKGgGaAloD0MIqySyD7JmRUCUhpRSlGgVS5NoFkdApglaYgJTl3V9lChoBmgJaA9DCOHOhZFeVXJAlIaUUpRoFUvuaBZHQKYJlgHeJpF1fZQoaAZoCWgPQwiSek/lNINzQJSGlFKUaBVNFAFoFkdApgnECxNZeXV9lChoBmgJaA9DCELr4cvEFXBAlIaUUpRoFUviaBZHQKYJ/R1HOKR1fZQoaAZoCWgPQwiz6nO11aRxQJSGlFKUaBVL7mgWR0CmCf101ZTydX2UKGgGaAloD0MI0xOWeMC5ckCUhpRSlGgVTSYBaBZHQKYKDLcKw6h1fZQoaAZoCWgPQwjWx0PfHTZzQJSGlFKUaBVL1WgWR0CmChwwj+rEdX2UKGgGaAloD0MIFRvzOiJCcUCUhpRSlGgVS9xoFkdApgqmV7hNunV9lChoBmgJaA9DCMTOFDpvnXJAlIaUUpRoFUv3aBZHQKYK0x9G7SR1fZQoaAZoCWgPQwi7fVaZaXtwQJSGlFKUaBVL8mgWR0CmCt4CQtBfdX2UKGgGaAloD0MI4ltYN96UbUCUhpRSlGgVS9loFkdApgr6XjU/fXV9lChoBmgJaA9DCPP/qiOHpnJAlIaUUpRoFU0OAWgWR0CmC4lfqoqDdX2UKGgGaAloD0MIycaDLTbucUCUhpRSlGgVS/BoFkdApgugRdyDI3V9lChoBmgJaA9DCNHP1OtW7HFAlIaUUpRoFUvPaBZHQKYLur4nF5x1fZQoaAZoCWgPQwjO+pRjsghzQJSGlFKUaBVL1WgWR0CmC7rYXfqHdX2UKGgGaAloD0MIVG6ilmbVb0CUhpRSlGgVS/NoFkdApgvKJqIrOXV9lChoBmgJaA9DCIs3Mo+8U3BAlIaUUpRoFUvjaBZHQKYL+O0b9611fZQoaAZoCWgPQwj8w5YeDTxwQJSGlFKUaBVL42gWR0CmDDINNJvpdX2UKGgGaAloD0MIiBIteTyEcUCUhpRSlGgVS9VoFkdApgxyjN6gNHV9lChoBmgJaA9DCGXggJYu5m5AlIaUUpRoFUvraBZHQKYMeoVmBe51fZQoaAZoCWgPQwiXi/hOzBpxQJSGlFKUaBVL22gWR0CmDJT3yqdZdX2UKGgGaAloD0MIQde+gF6jcECUhpRSlGgVS/poFkdApgzjZ13dK3V9lChoBmgJaA9DCAADQYBMz3NAlIaUUpRoFUv7aBZHQKYNBzshPj51fZQoaAZoCWgPQwhDyk+qfT9uQJSGlFKUaBVL3mgWR0CmDT4nfEXMdX2UKGgGaAloD0MI5ljeVQ9rc0CUhpRSlGgVS+ZoFkdApg2lbor4FnV9lChoBmgJaA9DCIRhwJKr1E1AlIaUUpRoFUufaBZHQKYNzpxm03R1fZQoaAZoCWgPQwjfbd44KfhuQJSGlFKUaBVNAgFoFkdApg3dYjjaPHV9lChoBmgJaA9DCKrTgaxnA3FAlIaUUpRoFU0NAWgWR0CmDfQzUI9ldX2UKGgGaAloD0MI8ItLVdq4ckCUhpRSlGgVS9hoFkdApg4ObCrLhnVlLg=="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 628,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
PPO-baseline-steps-2048000/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7d7bea5b786664030c43d548380e056eccbc45e9ba187973908433e105b48dce
|
3 |
+
size 84893
|
PPO-baseline-steps-2048000/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:751ed21d7171308df65919137b0257f03d567049aa1f8beb5e96601086d273ee
|
3 |
+
size 43201
|
PPO-baseline-steps-2048000/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
PPO-baseline-steps-2048000/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 283.12 +/- 15.88
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f97880880e0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f9788088170>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f9788088200>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f9788088290>", "_build": "<function ActorCriticPolicy._build at 0x7f9788088320>", "forward": "<function ActorCriticPolicy.forward at 0x7f97880883b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f9788088440>", "_predict": "<function ActorCriticPolicy._predict at 0x7f97880884d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f9788088560>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f97880885f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f9788088680>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f97880d3960>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 2048000, "_total_timesteps": 2048000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1652212308.5209534, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAGbasD0by78/g4OcPtOtUL4qv+A9Kyj4PQAAAAAAAAAAANmEPCjntz+zqIo+u5r/Pe4HM7yCl/28AAAAAAAAAABmfhW8j8JfunOp2zT14iAwvNAdO3s3JbQAAIA/AACAPzM7tD2Xj2c+bpIRvhAaV74sJFa947d8PAAAAAAAAAAAZuuRPbqivT/WLpQ+e7gNvl+gbz2YVDg+AAAAAAAAAAAzmy+8rtfVugpEQrvFuKY7ij93uz1DojwAAIA/AACAP5pRdb2uCZW6J0I+uimAgbat2KS6nZxcOQAAgD8AAIA/pkdePnESQD/Vn2m9YBDavuJUTj6J8RK+AAAAAAAAAABNEDC9mXKCP/h33TwpX+e+a/zzvY7zRT0AAAAAAAAAADO7WTu2hX68g1J7u4HcJzzxfvI98cUOvQAAgD8AAIA/AJgJvXx/eT4TovU99MW9vi74vT1+u4s8AAAAAAAAAADzxhK+3IvxPp5syz692OC+wFbZPZOu8z0AAAAAAAAAAIAYND62CM8+z2IKv73Fk74inq89LpnJvgAAAAAAAAAAM7GTvZP3oD8zpA6/J3spv+sKGL3rLHW+AAAAAAAAAACaMO48+zGSPfWm970Jciu+rL2avF1NhDsAAAAAAAAAADMPizvRnM49WEhgPRsljb4NlxM+Q9DOvAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIWyIXnMEjM0CUhpRSlIwBbJRLu4wBdJRHQKXzxHQQcxV1fZQoaAZoCWgPQwi2hlJ7UWxyQJSGlFKUaBVL/mgWR0Cl89crAgxKdX2UKGgGaAloD0MIurpjsY1TcUCUhpRSlGgVS9loFkdApfRCgRK6F3V9lChoBmgJaA9DCMk5sYc2/nFAlIaUUpRoFUvxaBZHQKX0fiJfpll1fZQoaAZoCWgPQwgrGJXUCb5yQJSGlFKUaBVL92gWR0Cl9IQ9A5aNdX2UKGgGaAloD0MIxLMEGQELb0CUhpRSlGgVS+poFkdApfSfmeUY9HV9lChoBmgJaA9DCNwvn6yYNW5AlIaUUpRoFUvfaBZHQKX1J/+bVjJ1fZQoaAZoCWgPQwhuh4bFqBdwQJSGlFKUaBVL2mgWR0Cl9TbuUliSdX2UKGgGaAloD0MIeSEdHgK+ckCUhpRSlGgVS+ZoFkdApfVlGAkLQXV9lChoBmgJaA9DCOW5vg8Hg25AlIaUUpRoFU0WAWgWR0Cl9WiKBNEgdX2UKGgGaAloD0MIFCAKZkwKb0CUhpRSlGgVS9toFkdApfV2iN83M3V9lChoBmgJaA9DCPwbtFefOXFAlIaUUpRoFUvlaBZHQKX1uAvL5h11fZQoaAZoCWgPQwj8brplx6BwQJSGlFKUaBVL0GgWR0Cl9bgi3XqadX2UKGgGaAloD0MIbQGh9XAbckCUhpRSlGgVTR8BaBZHQKX2C0Nz8xd1fZQoaAZoCWgPQwhcr+lBAQFyQJSGlFKUaBVL/GgWR0Cl9k2mgrYodX2UKGgGaAloD0MIeLgdGhazcUCUhpRSlGgVS/9oFkdApfZoQnQY13V9lChoBmgJaA9DCDy858DyLXNAlIaUUpRoFUvdaBZHQKX2bYcvM8p1fZQoaAZoCWgPQwiWCiqq/rJyQJSGlFKUaBVLzmgWR0Cl9r5rpJPJdX2UKGgGaAloD0MIRidLrXdhcECUhpRSlGgVS/toFkdApfbaJ66as3V9lChoBmgJaA9DCGhdo+VACnFAlIaUUpRoFUvSaBZHQKX3IfuCwr11fZQoaAZoCWgPQwj0GOWZV6FxQJSGlFKUaBVL5WgWR0Cl9zwUQCjldX2UKGgGaAloD0MIzas6q8UzcUCUhpRSlGgVS/doFkdApfd3f2saKnV9lChoBmgJaA9DCBsuck+Xs3FAlIaUUpRoFUvZaBZHQKX3tIikftB1fZQoaAZoCWgPQwi0AG2rGYByQJSGlFKUaBVL32gWR0Cl99O7xusLdX2UKGgGaAloD0MInfF9cWm4cECUhpRSlGgVS+doFkdApfgQpF1B+nV9lChoBmgJaA9DCE4On3QiUHFAlIaUUpRoFUvraBZHQKX4K7Qswtd1fZQoaAZoCWgPQwhUVz7Ls3pxQJSGlFKUaBVL92gWR0Cl+EJz1bqydX2UKGgGaAloD0MIRnu8kI7QcUCUhpRSlGgVS/xoFkdApfin2wmmcnV9lChoBmgJaA9DCLN5HAazkXFAlIaUUpRoFUv+aBZHQKX4rwPRRdh1fZQoaAZoCWgPQwhKfVna6bpxQJSGlFKUaBVL02gWR0CmAkPpIMBqdX2UKGgGaAloD0MIsfojDIN4cUCUhpRSlGgVS+poFkdApgJznvDxb3V9lChoBmgJaA9DCNI6qpqgSnFAlIaUUpRoFU0XAWgWR0CmAr58jRlZdX2UKGgGaAloD0MIb59VZkpDS0CUhpRSlGgVS79oFkdApgLIumJm/XV9lChoBmgJaA9DCGVQbXCiJHJAlIaUUpRoFUvXaBZHQKYCzOJtSAJ1fZQoaAZoCWgPQwjCGJEoNFNzQJSGlFKUaBVL7GgWR0CmAuzundftdX2UKGgGaAloD0MIPGh23VvccUCUhpRSlGgVTQgBaBZHQKYC8GorFwV1fZQoaAZoCWgPQwgSE9TwLdtuQJSGlFKUaBVL8mgWR0CmA2TfBN21dX2UKGgGaAloD0MImnlyTUFDcUCUhpRSlGgVS91oFkdApgO8sz2vjnV9lChoBmgJaA9DCKzj+KES7nJAlIaUUpRoFUvOaBZHQKYD6UHIIWx1fZQoaAZoCWgPQwhStd0En4xxQJSGlFKUaBVNEAFoFkdApgPyemNzbXV9lChoBmgJaA9DCGZJgJoafHNAlIaUUpRoFUvJaBZHQKYD8S7GvOh1fZQoaAZoCWgPQwhz2lNyjgdzQJSGlFKUaBVL32gWR0CmA/8U21lYdX2UKGgGaAloD0MIgpAsYIKFcUCUhpRSlGgVTQYBaBZHQKYED0DEFW51fZQoaAZoCWgPQwhKl/4lqaVxQJSGlFKUaBVL4GgWR0CmBItfgJkYdX2UKGgGaAloD0MItFVJZN91cUCUhpRSlGgVS9VoFkdApgShFuvU0HV9lChoBmgJaA9DCHPXEvKBP3FAlIaUUpRoFUvZaBZHQKYFMiyIHkd1fZQoaAZoCWgPQwghHR7CeB1tQJSGlFKUaBVL3GgWR0CmBTJQ+EAYdX2UKGgGaAloD0MIc4V3uQjRcECUhpRSlGgVS/toFkdApgVPUDuBtnV9lChoBmgJaA9DCHtMpDQbA3FAlIaUUpRoFUvmaBZHQKYFXpqynk11fZQoaAZoCWgPQwiMEB5tnChtQJSGlFKUaBVL3WgWR0CmBWjr7fpEdX2UKGgGaAloD0MIWi4bnbMmcECUhpRSlGgVTQEBaBZHQKYF0DJ2dNF1fZQoaAZoCWgPQwixiGGHMS5wQJSGlFKUaBVL8mgWR0CmBjLnTy8SdX2UKGgGaAloD0MIk3Ahj2Dkc0CUhpRSlGgVS8toFkdApgZUs+V1OnV9lChoBmgJaA9DCFYqqKh6b29AlIaUUpRoFUvvaBZHQKYGi9Oh0yR1fZQoaAZoCWgPQwiHakqyzlJzQJSGlFKUaBVL1GgWR0CmBpZd4VyndX2UKGgGaAloD0MIHxK+9/ewcUCUhpRSlGgVS+loFkdApgaqRMewLXV9lChoBmgJaA9DCGGKcmk853FAlIaUUpRoFUvfaBZHQKYGo+r2g391fZQoaAZoCWgPQwg42nHDb3dwQJSGlFKUaBVL9mgWR0CmBte6RQrMdX2UKGgGaAloD0MIJ/kRv+LCcECUhpRSlGgVS+BoFkdApgc8QEpy63V9lChoBmgJaA9DCC3Pg7uzXHFAlIaUUpRoFUvlaBZHQKYHYFM7EHd1fZQoaAZoCWgPQwjusInM3FxxQJSGlFKUaBVL0GgWR0CmB6LQHAymdX2UKGgGaAloD0MI6GuWy0Z6ckCUhpRSlGgVS9JoFkdApgenRmbsnnV9lChoBmgJaA9DCF9+p8kMBHJAlIaUUpRoFU0DAmgWR0CmB/ZPdl/ZdX2UKGgGaAloD0MIgPEMGvogckCUhpRSlGgVS+1oFkdApggPJgb6xnV9lChoBmgJaA9DCJrQJLEkzHNAlIaUUpRoFUvpaBZHQKYIHE9+w1R1fZQoaAZoCWgPQwjAJQD/FOJyQJSGlFKUaBVNBgFoFkdApghjpu/DcnV9lChoBmgJaA9DCEEpWrkX1XFAlIaUUpRoFUvkaBZHQKYIcKLKmsN1fZQoaAZoCWgPQwgDXfsCOjFxQJSGlFKUaBVL5WgWR0CmCNWeHzpYdX2UKGgGaAloD0MIMnIW9rQmbUCUhpRSlGgVS+VoFkdApgj4LThHb3V9lChoBmgJaA9DCE3WqIeo+XFAlIaUUpRoFUvlaBZHQKYJRzasZHd1fZQoaAZoCWgPQwhwzR39r69yQJSGlFKUaBVL82gWR0CmCVrs8gZCdX2UKGgGaAloD0MIqySyD7JmRUCUhpRSlGgVS5NoFkdApglaYgJTl3V9lChoBmgJaA9DCOHOhZFeVXJAlIaUUpRoFUvuaBZHQKYJlgHeJpF1fZQoaAZoCWgPQwiSek/lNINzQJSGlFKUaBVNFAFoFkdApgnECxNZeXV9lChoBmgJaA9DCELr4cvEFXBAlIaUUpRoFUviaBZHQKYJ/R1HOKR1fZQoaAZoCWgPQwiz6nO11aRxQJSGlFKUaBVL7mgWR0CmCf101ZTydX2UKGgGaAloD0MI0xOWeMC5ckCUhpRSlGgVTSYBaBZHQKYKDLcKw6h1fZQoaAZoCWgPQwjWx0PfHTZzQJSGlFKUaBVL1WgWR0CmChwwj+rEdX2UKGgGaAloD0MIFRvzOiJCcUCUhpRSlGgVS9xoFkdApgqmV7hNunV9lChoBmgJaA9DCMTOFDpvnXJAlIaUUpRoFUv3aBZHQKYK0x9G7SR1fZQoaAZoCWgPQwi7fVaZaXtwQJSGlFKUaBVL8mgWR0CmCt4CQtBfdX2UKGgGaAloD0MI4ltYN96UbUCUhpRSlGgVS9loFkdApgr6XjU/fXV9lChoBmgJaA9DCPP/qiOHpnJAlIaUUpRoFU0OAWgWR0CmC4lfqoqDdX2UKGgGaAloD0MIycaDLTbucUCUhpRSlGgVS/BoFkdApgugRdyDI3V9lChoBmgJaA9DCNHP1OtW7HFAlIaUUpRoFUvPaBZHQKYLur4nF5x1fZQoaAZoCWgPQwjO+pRjsghzQJSGlFKUaBVL1WgWR0CmC7rYXfqHdX2UKGgGaAloD0MIVG6ilmbVb0CUhpRSlGgVS/NoFkdApgvKJqIrOXV9lChoBmgJaA9DCIs3Mo+8U3BAlIaUUpRoFUvjaBZHQKYL+O0b9611fZQoaAZoCWgPQwj8w5YeDTxwQJSGlFKUaBVL42gWR0CmDDINNJvpdX2UKGgGaAloD0MIiBIteTyEcUCUhpRSlGgVS9VoFkdApgxyjN6gNHV9lChoBmgJaA9DCGXggJYu5m5AlIaUUpRoFUvraBZHQKYMeoVmBe51fZQoaAZoCWgPQwiXi/hOzBpxQJSGlFKUaBVL22gWR0CmDJT3yqdZdX2UKGgGaAloD0MIQde+gF6jcECUhpRSlGgVS/poFkdApgzjZ13dK3V9lChoBmgJaA9DCAADQYBMz3NAlIaUUpRoFUv7aBZHQKYNBzshPj51fZQoaAZoCWgPQwhDyk+qfT9uQJSGlFKUaBVL3mgWR0CmDT4nfEXMdX2UKGgGaAloD0MI5ljeVQ9rc0CUhpRSlGgVS+ZoFkdApg2lbor4FnV9lChoBmgJaA9DCIRhwJKr1E1AlIaUUpRoFUufaBZHQKYNzpxm03R1fZQoaAZoCWgPQwjfbd44KfhuQJSGlFKUaBVNAgFoFkdApg3dYjjaPHV9lChoBmgJaA9DCKrTgaxnA3FAlIaUUpRoFU0NAWgWR0CmDfQzUI9ldX2UKGgGaAloD0MI8ItLVdq4ckCUhpRSlGgVS9hoFkdApg4ObCrLhnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 628, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c417b0510398936afab970cc3b70a2e563d41a4422a908ee3510160961d423f
|
3 |
+
size 208715
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 283.1210030989093, "std_reward": 15.882366665222483, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-10T20:36:12.094856"}
|