Update README.md
Browse files
README.md
CHANGED
@@ -5,5 +5,64 @@ datasets:
|
|
5 |
- merve/vqav2-small
|
6 |
---
|
7 |
|
8 |
-
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
- merve/vqav2-small
|
6 |
---
|
7 |
|
8 |
+
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/PebmPLcCig5BlpUS99VUc.png)
|
9 |
|
10 |
+
# Idefics3Llama Fine-tuned using QLoRA on VQAv2
|
11 |
+
|
12 |
+
- This is the [Idefics3Llama](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3) model QLoRA fine-tuned on a very small part of [VQAv2](https://huggingface.co/datasets/merve/vqav2-small) dataset.
|
13 |
+
|
14 |
+
- Find the fine-tuning notebook [here](https://github.com/merveenoyan/smol-vision/blob/main/Idefics_FT.ipynb).
|
15 |
+
|
16 |
+
## Usage
|
17 |
+
|
18 |
+
You can load and use this model as follows.
|
19 |
+
|
20 |
+
```python
|
21 |
+
|
22 |
+
from transformers import Idefics3ForConditionalGeneration, AutoProcessor
|
23 |
+
|
24 |
+
peft_model_id = "idefics3-llama-vqav2/checkpoint-535"
|
25 |
+
base_model_id = "HuggingFaceM4/Idefics3-8B-Llama3"
|
26 |
+
processor = AutoProcessor.from_pretrained(base_model_id)
|
27 |
+
model = Idefics3ForConditionalGeneration.from_pretrained(base_model_id)
|
28 |
+
model.load_adapter(peft_model_id).to("cuda")
|
29 |
+
|
30 |
+
```
|
31 |
+
|
32 |
+
This model was conditioned on a prompt "Answer briefly.".
|
33 |
+
```python
|
34 |
+
from PIL import Image
|
35 |
+
import requests
|
36 |
+
from transformers.image_utils import load_image
|
37 |
+
|
38 |
+
DEVICE = "cuda"
|
39 |
+
|
40 |
+
image = load_image("https://huggingface.co/spaces/merve/OWLSAM2/resolve/main/buddha.JPG")
|
41 |
+
|
42 |
+
|
43 |
+
messages = [
|
44 |
+
{
|
45 |
+
"role": "user",
|
46 |
+
"content": [
|
47 |
+
{"type": "text", "text": "Answer briefly."},
|
48 |
+
{"type": "image"},
|
49 |
+
{"type": "text", "text": "Which country is this located in?"}
|
50 |
+
]
|
51 |
+
}
|
52 |
+
]
|
53 |
+
|
54 |
+
text = processor.apply_chat_template(messages, add_generation_prompt=True)
|
55 |
+
inputs = processor(text=text, images=image, return_tensors="pt", padding=True).to("cuda")
|
56 |
+
```
|
57 |
+
|
58 |
+
We can infer.
|
59 |
+
|
60 |
+
```python
|
61 |
+
generated_ids = model.generate(**inputs, max_new_tokens=500)
|
62 |
+
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
|
63 |
+
print(generated_texts)
|
64 |
+
|
65 |
+
##['User: Answer briefly.<row_1_col_1><row_1_col_2><row_1_col_3><row_1_col_4>\n<row_2_col_1>
|
66 |
+
# <row_2_col_2><row_2_col_3><row_2_col_4>\n<row_3_col_1><row_3_col_2><row_3_col_3>
|
67 |
+
# <row_3_col_4>\n\n<global-img>Which country is this located in?\nAssistant: thailand\nAssistant: thailand']
|
68 |
+
```
|