File size: 1,514 Bytes
9f30837 6f23931 9f30837 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
language: en
license: apache-2.0
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_xml
- ms_marco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
---
# ONNX version of sentence-transormers/all-MiniLM-L6-v2
This is a sentence-transformers model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search. The ONNX version of this model is made for the [Metarank](https://github.com/metarank/metarank) re-ranker
to do semantic similarity.
Check out the [main Metarank docs](https://docs.metarank.ai) on how to configure it.
TLDR:
```yaml
- type: field_match
name: title_query_match
rankingField: ranking.query
itemField: item.title
distance: cos
method:
type: bert
model: metarank/all-MiniLM-L6-v2
```
## Building the model
```shell
$> pip install -r requirements.txt
$> python convert.py
============= Diagnostic Run torch.onnx.export version 2.0.0+cu117 =============
verbose: False, log level: Level.ERROR
======================= 0 NONE 0 NOTE 0 WARNING 0 ERROR ========================
```
## License
Apache 2.0 |