shuttie
commited on
Commit
·
f80e0e3
0
Parent(s):
initial commit
Browse files- .gitattributes +4 -0
- .gitignore +2 -0
- README.md +83 -0
- config.json +33 -0
- finetune.py +99 -0
- onnx_convert.py +18 -0
- pytorch_model.bin +3 -0
- pytorch_model.onnx +3 -0
- requirements.txt +4 -0
- special_tokens_map.json +7 -0
- test-small.json.gz +3 -0
- tokenizer.json +0 -0
- tokenizer_config.json +15 -0
- train-small.json.gz +3 -0
- vocab.txt +3 -0
.gitattributes
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
vocab.txt filter=lfs diff=lfs merge=lfs -text
|
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
.venv
|
2 |
+
venv
|
README.md
ADDED
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
|
8 |
+
---
|
9 |
+
|
10 |
+
# metarank/ce-esci-MiniLM-L6-v2
|
11 |
+
|
12 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 384 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
13 |
+
|
14 |
+
A [cross-encoder/ms-marco-MiniLM-L-6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) model fine-tuned on
|
15 |
+
[Amazon ESCI dataset](https://github.com/amazon-science/esci-data).
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('metarank/esci-MiniLM-L6-v2')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
## Training
|
37 |
+
The model was trained with the parameters:
|
38 |
+
|
39 |
+
**DataLoader**:
|
40 |
+
|
41 |
+
`torch.utils.data.dataloader.DataLoader` of length 769 with parameters:
|
42 |
+
```
|
43 |
+
{'batch_size': 128, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
44 |
+
```
|
45 |
+
|
46 |
+
**Loss**:
|
47 |
+
|
48 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
49 |
+
```
|
50 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
51 |
+
```
|
52 |
+
|
53 |
+
Parameters of the fit()-Method:
|
54 |
+
```
|
55 |
+
{
|
56 |
+
"epochs": 1,
|
57 |
+
"evaluation_steps": 0,
|
58 |
+
"evaluator": "NoneType",
|
59 |
+
"max_grad_norm": 1,
|
60 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
61 |
+
"optimizer_params": {
|
62 |
+
"lr": 2e-05
|
63 |
+
},
|
64 |
+
"scheduler": "WarmupLinear",
|
65 |
+
"steps_per_epoch": null,
|
66 |
+
"warmup_steps": 1000,
|
67 |
+
"weight_decay": 0.01
|
68 |
+
}
|
69 |
+
```
|
70 |
+
|
71 |
+
|
72 |
+
## Full Model Architecture
|
73 |
+
```
|
74 |
+
SentenceTransformer(
|
75 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
76 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
77 |
+
(2): Normalize()
|
78 |
+
)
|
79 |
+
```
|
80 |
+
|
81 |
+
## Citing & Authors
|
82 |
+
|
83 |
+
* Roman Grebennikov
|
config.json
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "cross-encoder/ms-marco-MiniLM-L-6-v2",
|
3 |
+
"architectures": [
|
4 |
+
"BertForSequenceClassification"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 384,
|
12 |
+
"id2label": {
|
13 |
+
"0": "LABEL_0"
|
14 |
+
},
|
15 |
+
"initializer_range": 0.02,
|
16 |
+
"intermediate_size": 1536,
|
17 |
+
"label2id": {
|
18 |
+
"LABEL_0": 0
|
19 |
+
},
|
20 |
+
"layer_norm_eps": 1e-12,
|
21 |
+
"max_position_embeddings": 512,
|
22 |
+
"model_type": "bert",
|
23 |
+
"num_attention_heads": 12,
|
24 |
+
"num_hidden_layers": 6,
|
25 |
+
"pad_token_id": 0,
|
26 |
+
"position_embedding_type": "absolute",
|
27 |
+
"sbert_ce_default_activation_function": "torch.nn.modules.linear.Identity",
|
28 |
+
"torch_dtype": "float32",
|
29 |
+
"transformers_version": "4.27.4",
|
30 |
+
"type_vocab_size": 2,
|
31 |
+
"use_cache": true,
|
32 |
+
"vocab_size": 30522
|
33 |
+
}
|
finetune.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from sentence_transformers import SentenceTransformer, LoggingHandler, util, models, evaluation, losses, InputExample, CrossEncoder
|
2 |
+
from torch import nn
|
3 |
+
import csv
|
4 |
+
from torch.utils.data import DataLoader, Dataset
|
5 |
+
import torch
|
6 |
+
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator, SentenceEvaluator, SimilarityFunction, RerankingEvaluator
|
7 |
+
from sentence_transformers.cross_encoder.evaluation import CERerankingEvaluator
|
8 |
+
import logging
|
9 |
+
import json
|
10 |
+
import random
|
11 |
+
import gzip
|
12 |
+
|
13 |
+
model_name = 'cross-encoder/ms-marco-MiniLM-L-6-v2'
|
14 |
+
|
15 |
+
train_batch_size = 64
|
16 |
+
max_seq_length = 128
|
17 |
+
num_epochs = 1
|
18 |
+
warmup_steps = 1000
|
19 |
+
model_save_path = '.'
|
20 |
+
lr = 2e-5
|
21 |
+
|
22 |
+
class ESCIDataset(Dataset):
|
23 |
+
def __init__(self, input):
|
24 |
+
self.queries = []
|
25 |
+
self.posneg = []
|
26 |
+
with gzip.open(input) as jsonfile:
|
27 |
+
for line in jsonfile.readlines():
|
28 |
+
query = json.loads(line)
|
29 |
+
for doc in query['e']:
|
30 |
+
self.queries.append(InputExample(texts=[query['query'], doc['title']], label=1.0))
|
31 |
+
for doc in query['s']:
|
32 |
+
self.queries.append(InputExample(texts=[query['query'], doc['title']], label=0.1))
|
33 |
+
for doc in query['c']:
|
34 |
+
self.queries.append(InputExample(texts=[query['query'], doc['title']], label=0.01))
|
35 |
+
for doc in query['i']:
|
36 |
+
self.queries.append(InputExample(texts=[query['query'], doc['title']], label=0.0))
|
37 |
+
|
38 |
+
def __getitem__(self, item):
|
39 |
+
return self.queries[item]
|
40 |
+
|
41 |
+
def __len__(self):
|
42 |
+
return len(self.queries)
|
43 |
+
|
44 |
+
class ESCIEvalDataset(Dataset):
|
45 |
+
def __init__(self, input):
|
46 |
+
self.queries = []
|
47 |
+
with gzip.open(input) as jsonfile:
|
48 |
+
for line in jsonfile.readlines():
|
49 |
+
query = json.loads(line)
|
50 |
+
if len(query['e']) > 0 and len(query['i']) > 0:
|
51 |
+
for p in query['e']:
|
52 |
+
positive = p['title']
|
53 |
+
for n in query['i']:
|
54 |
+
negative = n['title']
|
55 |
+
self.queries.append(InputExample(texts=[query['query'], positive, negative]))
|
56 |
+
|
57 |
+
def __getitem__(self, item):
|
58 |
+
return self.queries[item]
|
59 |
+
|
60 |
+
def __len__(self):
|
61 |
+
return len(self.queries)
|
62 |
+
|
63 |
+
model = CrossEncoder(model_name, num_labels=1)
|
64 |
+
model.max_seq_length = max_seq_length
|
65 |
+
|
66 |
+
|
67 |
+
train_dataset = ESCIDataset(input='train-small.json.gz')
|
68 |
+
eval_dataset = ESCIEvalDataset(input='test-small.json.gz')
|
69 |
+
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=train_batch_size)
|
70 |
+
|
71 |
+
samples = {}
|
72 |
+
for query in eval_dataset.queries:
|
73 |
+
qstr = query.texts[0]
|
74 |
+
sample = samples.get(qstr, {'query': qstr})
|
75 |
+
positive = sample.get('positive', [])
|
76 |
+
positive.append(query.texts[1])
|
77 |
+
sample['positive'] = positive
|
78 |
+
negative = sample.get('negative', [])
|
79 |
+
negative.append(query.texts[2])
|
80 |
+
sample['negative'] = negative
|
81 |
+
samples[qstr] = sample
|
82 |
+
|
83 |
+
evaluator = CERerankingEvaluator(samples=samples,name='esci')
|
84 |
+
|
85 |
+
# Train the model
|
86 |
+
|
87 |
+
model.fit(train_dataloader=train_dataloader,
|
88 |
+
epochs=num_epochs,
|
89 |
+
warmup_steps=warmup_steps,
|
90 |
+
use_amp=True,
|
91 |
+
optimizer_params = {'lr': lr},
|
92 |
+
evaluator=evaluator,
|
93 |
+
# evaluation_steps=1000,
|
94 |
+
output_path=model_save_path
|
95 |
+
)
|
96 |
+
|
97 |
+
# Save the model
|
98 |
+
|
99 |
+
model.save(model_save_path)
|
onnx_convert.py
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
2 |
+
import torch
|
3 |
+
|
4 |
+
max_seq_length=128
|
5 |
+
|
6 |
+
model = AutoModel.from_pretrained(".")
|
7 |
+
model.eval()
|
8 |
+
|
9 |
+
inputs = {"input_ids": torch.ones(1, max_seq_length, dtype=torch.int64),
|
10 |
+
"attention_mask": torch.ones(1, max_seq_length, dtype=torch.int64),
|
11 |
+
"token_type_ids": torch.ones(1, max_seq_length, dtype=torch.int64)}
|
12 |
+
|
13 |
+
symbolic_names = {0: 'batch_size', 1: 'max_seq_len'}
|
14 |
+
|
15 |
+
torch.onnx.export(model, args=tuple(inputs.values()), f='pytorch_model.onnx', export_params=True,
|
16 |
+
input_names=['input_ids', 'attention_mask', 'token_type_ids'], output_names=['last_hidden_state'],
|
17 |
+
dynamic_axes={'input_ids': symbolic_names, 'attention_mask': symbolic_names, 'token_type_ids': symbolic_names})
|
18 |
+
|
pytorch_model.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f21a29b4c675eabb6c8d3d776d43fa7264625b5b354cd8e22d69bbbbc142f240
|
3 |
+
size 90894261
|
pytorch_model.onnx
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7ad93efc36fdce0ba568e5bae8db0ce8f2314b1a82bf46fc7732fac485414fd9
|
3 |
+
size 90984263
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sentence-transformers==2.2.2
|
2 |
+
torch==2.0.0
|
3 |
+
onnx==1.13.1
|
4 |
+
huggingface_hub==0.13.3
|
special_tokens_map.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"mask_token": "[MASK]",
|
4 |
+
"pad_token": "[PAD]",
|
5 |
+
"sep_token": "[SEP]",
|
6 |
+
"unk_token": "[UNK]"
|
7 |
+
}
|
test-small.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb557251b12addb55d94af30120d121dfa6391e58bcc4a9aee0f1d35cc2ea1c8
|
3 |
+
size 8522018
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": "[CLS]",
|
3 |
+
"do_basic_tokenize": true,
|
4 |
+
"do_lower_case": true,
|
5 |
+
"mask_token": "[MASK]",
|
6 |
+
"model_max_length": 512,
|
7 |
+
"never_split": null,
|
8 |
+
"pad_token": "[PAD]",
|
9 |
+
"sep_token": "[SEP]",
|
10 |
+
"special_tokens_map_file": "/home/shutty/.cache/huggingface/hub/models--cross-encoder--ms-marco-MiniLM-L-6-v2/snapshots/b2cfda50a1a9fc7919e7444afbb52610d268af92/special_tokens_map.json",
|
11 |
+
"strip_accents": null,
|
12 |
+
"tokenize_chinese_chars": true,
|
13 |
+
"tokenizer_class": "BertTokenizer",
|
14 |
+
"unk_token": "[UNK]"
|
15 |
+
}
|
train-small.json.gz
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9c7c14a8910a3a6c09421a08a84cfc0e74fd198d0aaf43ab2c39250a8ae4e4dd
|
3 |
+
size 19430577
|
vocab.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07eced375cec144d27c900241f3e339478dec958f92fddbc551f295c992038a3
|
3 |
+
size 231508
|