ppo-LunarLander-v2 / config.json
michael-kingston's picture
Upload PPO LunarLander-v2 trained agent
66215c4
raw
history blame
13.8 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7904f7501360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7904f75013f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7904f7501480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7904f7501510>", "_build": "<function ActorCriticPolicy._build at 0x7904f75015a0>", "forward": "<function ActorCriticPolicy.forward at 0x7904f7501630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7904f75016c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7904f7501750>", "_predict": "<function ActorCriticPolicy._predict at 0x7904f75017e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7904f7501870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7904f7501900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7904f7501990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7904f74fcd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698200629693153580, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYvfz7I2Ky8jkGDuyp/jDlprhm+OipkOgAAgD8AAIA/gH9dPcP5GrppmKi6w30jtnAbkLv5aMc5AACAPwAAgD8Ad5u93auAPwdMHD1CklG+eBkFPRJGKrsAAAAAAAAAAJCLi75Qt4E/04xWvvm5W777mdC9fe2IPQAAAAAAAAAAYJkjPr1eUDyM8Kw6FzK8ON4H5T3yWvK5AACAPwAAgD9zmo29FByCui0L+jtjwaY250Q5umOUojUAAIA/AACAP82M+rq4xv253a3auQK8i7bQFym4kFADOQAAgD8AAIA/813ZPfZMILoe+Le7mV92OHdlv7pA6/c3AAAAAAAAgD8ASDI9XLO/P4Yb0T6cdIg+qQupvJrbmT0AAAAAAAAAABPsPL4OkoK8bHOjOhLfYDniXus9eqrvuQAAgD8AAIA/zY5ZPRT+q7q4edm7gM/0OKOAnzvoI3s6AACAPwAAgD+a2aA60X6nPaT9Nbz+FBC+pi6cui4iIL0AAAAAAAAAAE0myr3DDS66qKH7uuHHBrcRUgE7FOMSOgAAgD8AAIA/0FtUvodOnj+x0Bm/KsaWvqFggr7K602+AAAAAAAAAACmohu+P4wDP4DSKT3XiyS+NUmRu2XRNr0AAAAAAAAAAKYYjD0fEx0+R6C+u89OKb7eke680k1svQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCsmXTmW+oOMAWyUTZMBjAF0lEdAkjWml/H5rXV9lChoBkdAN0thNM495mgHTYoBaAhHQJI13u7YkE91fZQoaAZHQGAZSOinHedoB03oA2gIR0CSNj2ugYgrdX2UKGgGR0BiuIxtYSxraAdN6ANoCEdAkj1t1yNn5HV9lChoBkdAYhf3r2QGOmgHTegDaAhHQJJAfKFIuoR1fZQoaAZHQFacjTKDCgtoB03oA2gIR0CSQYJSR8txdX2UKGgGR8AZuc0+C9RKaAdNWgFoCEdAkkPODvmYB3V9lChoBkdAXSBVIZqEe2gHTegDaAhHQJJGureZXuF1fZQoaAZHQFyNnR9gF5hoB03oA2gIR0CSTVKbayrxdX2UKGgGR0BgNLc0tRNzaAdN6ANoCEdAkk9xKcurZXV9lChoBkdAYdwdbPhQ32gHTegDaAhHQJJa4rrgOz91fZQoaAZHQFg4IInjQzFoB03oA2gIR0CSbSzollbvdX2UKGgGR0Bg4BxWDHwPaAdN6ANoCEdAknFj9KmKqHV9lChoBkdAXaJqfvnbI2gHTegDaAhHQJJ1DLIPsiV1fZQoaAZHwAX6t9x6v7poB00fAWgIR0CSfClrdnCgdX2UKGgGR0BbkgX/HYHxaAdN6ANoCEdAkoT+CTUy6HV9lChoBkdAXu+23KB/Z2gHTegDaAhHQJKG7a24NI91fZQoaAZHQFlhvs7dSEVoB03oA2gIR0CSjmGEf1YhdX2UKGgGR0BhEveWOZLJaAdN6ANoCEdAko6aRdQfp3V9lChoBkdAXb10T101ZWgHTegDaAhHQJKO/aHsTnJ1fZQoaAZHQGA4RCY1He9oB03oA2gIR0CSl1vuw5eadX2UKGgGR0BcnuTibUgCaAdN6ANoCEdAkpuubExZdXV9lChoBkdAWm1hoduHe2gHTegDaAhHQJKdCLsKLKp1fZQoaAZHQF8PgvUSZjRoB03oA2gIR0CSoELRrrPddX2UKGgGR0BfC2E4//vOaAdN6ANoCEdAkqQwaisXBXV9lChoBkdAYgMpRXOnmGgHTegDaAhHQJKsMoRZlnR1fZQoaAZHQFvWpQDV6NVoB03oA2gIR0CSrg+qioKldX2UKGgGR8AnACRwIdELaAdNdwFoCEdAkq9zM7lq8HV9lChoBkdAXSXL4etCA2gHTegDaAhHQJLEj7YTTOR1fZQoaAZHQF/qXOnl4khoB03oA2gIR0CSyEoM8YAKdX2UKGgGR0BgDJVQyhzvaAdN6ANoCEdAkstzx9XtB3V9lChoBkdAYEtuNxVAA2gHTegDaAhHQJLSLGp++dt1fZQoaAZHQF5lQ79ycTdoB03oA2gIR0CS3Xk4WDYidX2UKGgGR0BgmmK2rn1WaAdN6ANoCEdAkt/nryDqW3V9lChoBkdAXWz94u9OAWgHTegDaAhHQJLqJ9w3o9t1fZQoaAZHQFZ3n7pFCsxoB03oA2gIR0CS6me0Xxe+dX2UKGgGR0BfkkGVzIV/aAdN6ANoCEdAkvLt6cAimnV9lChoBkfAOB+enQ6ZIGgHTVABaAhHQJL0CMVDa5B1fZQoaAZHQGESyn1nM+xoB03oA2gIR0CS9kcMmWt2dX2UKGgGR0BbbamGdqcmaAdN6ANoCEdAkvdTwpe/pXV9lChoBkdAYTA2VE/jbWgHTegDaAhHQJL51WbPQfJ1fZQoaAZHQFqtmG/N7jVoB03oA2gIR0CS/O1uR9w4dX2UKGgGR8Axoxe9i+cpaAdNOwFoCEdAkwI6/h2nsXV9lChoBkdAYF30yxiXpmgHTegDaAhHQJMDqXSjQAx1fZQoaAZHQFzVTQmeDnNoB03oA2gIR0CTBbSF49owdX2UKGgGR0BgQjgTAWSEaAdN6ANoCEdAkwcDbzshPnV9lChoBkfAQbJYV6/qPmgHTTQBaAhHQJMJAHAymAN1fZQoaAZHQF0A+NLlFMJoB03oA2gIR0CTH22phnandX2UKGgGR0BeSzJdSl3yaAdN6ANoCEdAkyTpGnXNDHV9lChoBkdAYOxYnOSntWgHTegDaAhHQJMpFzYEnst1fZQoaAZHwDy53Y+Sr5toB01KAWgIR0CTLHaz/p+udX2UKGgGR0BgKIm3OObRaAdN6ANoCEdAkzbknPVurXV9lChoBkdAXww9hZyMk2gHTegDaAhHQJM4gX7+DOF1fZQoaAZHQGLZpokAxSJoB03oA2gIR0CTPxSb6P8ydX2UKGgGR0BcTZDArQPaaAdN6ANoCEdAk0enarWAgHV9lChoBkdAYTIz8gpz92gHTegDaAhHQJNJxw71Zkl1fZQoaAZHQGD0s189fTloB03oA2gIR0CTStTLns9kdX2UKGgGR0BdFzRhMJyAaAdN6ANoCEdAk01ftD2JznV9lChoBkdAYUXqJuVHF2gHTegDaAhHQJNQwfHPu5V1fZQoaAZHQFyeUQCjk+5oB03oA2gIR0CTWH4/eLvUdX2UKGgGR0BcA5fD1oQGaAdN6ANoCEdAk1p2SEDhcnV9lChoBkdAX51iay8jA2gHTegDaAhHQJNdQu/UONJ1fZQoaAZHQGCFg9eQdS5oB03oA2gIR0CTXySsbNr1dX2UKGgGR0BQPWGZeAuqaAdN6ANoCEdAk3eZul41P3V9lChoBkdAYEUtkFwDNmgHTegDaAhHQJN7toM8YAN1fZQoaAZHQF826XSjQAxoB03oA2gIR0CTfz4JeE7GdX2UKGgGR0Basa6asp5NaAdN6ANoCEdAk4OKL4vexnV9lChoBkdAazuPsiSq2mgHTX4BaAhHQJOFaLbYbsF1fZQoaAZHQF0Msz2vjfhoB03oA2gIR0CTkfCBPKuCdX2UKGgGR0BeIul41P30aAdN6ANoCEdAk5RPP5YYBXV9lChoBkdAYdHhlUZNwmgHTegDaAhHQJOfNsxfv4N1fZQoaAZHQFqgExZdOZdoB03oA2gIR0CTq+rrPdEcdX2UKGgGR0BeVg4GUwBYaAdN6ANoCEdAk67/r4WUKXV9lChoBkdAXvLR3NcGDGgHTegDaAhHQJOwgbrC3w11fZQoaAZHQFlxGLDQ7cRoB03oA2gIR0CTs/tozvZzdX2UKGgGR0BgSHo3aSLZaAdN6ANoCEdAk7g6tHQQc3V9lChoBkdAYGT+FUQ042gHTegDaAhHQJO9WNT987Z1fZQoaAZHQGAjDOcDr7hoB03oA2gIR0CTvq7PIGQkdX2UKGgGR0BgLxLPD50saAdN6ANoCEdAk8B+Dzyz5XV9lChoBkdANSmDpTuOTGgHTWABaAhHQJPJTNnoPkJ1fZQoaAZHwDT5apxWDHxoB01cAWgIR0CTz/Gnn+yadX2UKGgGR0BhDsqBmPHUaAdN6ANoCEdAk9Wvnr6ciHV9lChoBkdAYiHAP/aQFWgHTegDaAhHQJPZRX3g1m91fZQoaAZHQGfrGetjkMloB00EA2gIR0CT2xlA/s3RdX2UKGgGR0BhCPEbYK6XaAdN6ANoCEdAk9wXHR1HOXV9lChoBkdAV6n1g6U7jmgHTegDaAhHQJPfcUGmk311fZQoaAZHQGBW4XXRPXVoB03oA2gIR0CT4WVawD/3dX2UKGgGR0BSouPvKEFoaAdN6ANoCEdAk+07rs0HhXV9lChoBkdAYCvUI9kjHGgHTegDaAhHQJP5gntv4ud1fZQoaAZHwEDf2g3974VoB01IAWgIR0CT+fSThYNidX2UKGgGR0BfciP6sQumaAdN6ANoCEdAlAJ6R+z+m3V9lChoBkdAYNEAGSpzcWgHTegDaAhHQJQFpiuuA7R1fZQoaAZHQGFywzUI9kloB03oA2gIR0CUCC4s3AEddX2UKGgGR0BiRgxk/bCaaAdN6ANoCEdAlBEjjzZpSXV9lChoBkdAYSrz4DcM3WgHTegDaAhHQJQStDG96C11fZQoaAZHQGEhLdN34bloB03oA2gIR0CUFN4bjtG/dX2UKGgGR0BheWFg2IfsaAdN6ANoCEdAlB9heTmnwXV9lChoBkfAIOT90ihWYGgHTWABaAhHQJQkcDNhVlx1fZQoaAZHQGM4lgMMI/toB03oA2gIR0CUKL2B8QZodX2UKGgGR0Ba1+Cf6Gg0aAdN6ANoCEdAlCrLxVhkRXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}