michael-kingston
commited on
Commit
·
1585f16
1
Parent(s):
66215c4
Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2-1.zip +3 -0
- ppo-LunarLander-v2-1/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-1/data +99 -0
- ppo-LunarLander-v2-1/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-1/policy.pth +3 -0
- ppo-LunarLander-v2-1/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-1/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value:
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: LunarLander-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -163.04 +/- 104.28
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7904f7501360>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7904f75013f0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7904f7501480>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7904f7501510>", "_build": "<function ActorCriticPolicy._build at 0x7904f75015a0>", "forward": "<function ActorCriticPolicy.forward at 0x7904f7501630>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7904f75016c0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7904f7501750>", "_predict": "<function ActorCriticPolicy._predict at 0x7904f75017e0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7904f7501870>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7904f7501900>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7904f7501990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7904f74fcd00>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698200629693153580, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAEYvfz7I2Ky8jkGDuyp/jDlprhm+OipkOgAAgD8AAIA/gH9dPcP5GrppmKi6w30jtnAbkLv5aMc5AACAPwAAgD8Ad5u93auAPwdMHD1CklG+eBkFPRJGKrsAAAAAAAAAAJCLi75Qt4E/04xWvvm5W777mdC9fe2IPQAAAAAAAAAAYJkjPr1eUDyM8Kw6FzK8ON4H5T3yWvK5AACAPwAAgD9zmo29FByCui0L+jtjwaY250Q5umOUojUAAIA/AACAP82M+rq4xv253a3auQK8i7bQFym4kFADOQAAgD8AAIA/813ZPfZMILoe+Le7mV92OHdlv7pA6/c3AAAAAAAAgD8ASDI9XLO/P4Yb0T6cdIg+qQupvJrbmT0AAAAAAAAAABPsPL4OkoK8bHOjOhLfYDniXus9eqrvuQAAgD8AAIA/zY5ZPRT+q7q4edm7gM/0OKOAnzvoI3s6AACAPwAAgD+a2aA60X6nPaT9Nbz+FBC+pi6cui4iIL0AAAAAAAAAAE0myr3DDS66qKH7uuHHBrcRUgE7FOMSOgAAgD8AAIA/0FtUvodOnj+x0Bm/KsaWvqFggr7K602+AAAAAAAAAACmohu+P4wDP4DSKT3XiyS+NUmRu2XRNr0AAAAAAAAAAKYYjD0fEx0+R6C+u89OKb7eke680k1svQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQCsmXTmW+oOMAWyUTZMBjAF0lEdAkjWml/H5rXV9lChoBkdAN0thNM495mgHTYoBaAhHQJI13u7YkE91fZQoaAZHQGAZSOinHedoB03oA2gIR0CSNj2ugYgrdX2UKGgGR0BiuIxtYSxraAdN6ANoCEdAkj1t1yNn5HV9lChoBkdAYhf3r2QGOmgHTegDaAhHQJJAfKFIuoR1fZQoaAZHQFacjTKDCgtoB03oA2gIR0CSQYJSR8txdX2UKGgGR8AZuc0+C9RKaAdNWgFoCEdAkkPODvmYB3V9lChoBkdAXSBVIZqEe2gHTegDaAhHQJJGureZXuF1fZQoaAZHQFyNnR9gF5hoB03oA2gIR0CSTVKbayrxdX2UKGgGR0BgNLc0tRNzaAdN6ANoCEdAkk9xKcurZXV9lChoBkdAYdwdbPhQ32gHTegDaAhHQJJa4rrgOz91fZQoaAZHQFg4IInjQzFoB03oA2gIR0CSbSzollbvdX2UKGgGR0Bg4BxWDHwPaAdN6ANoCEdAknFj9KmKqHV9lChoBkdAXaJqfvnbI2gHTegDaAhHQJJ1DLIPsiV1fZQoaAZHwAX6t9x6v7poB00fAWgIR0CSfClrdnCgdX2UKGgGR0BbkgX/HYHxaAdN6ANoCEdAkoT+CTUy6HV9lChoBkdAXu+23KB/Z2gHTegDaAhHQJKG7a24NI91fZQoaAZHQFlhvs7dSEVoB03oA2gIR0CSjmGEf1YhdX2UKGgGR0BhEveWOZLJaAdN6ANoCEdAko6aRdQfp3V9lChoBkdAXb10T101ZWgHTegDaAhHQJKO/aHsTnJ1fZQoaAZHQGA4RCY1He9oB03oA2gIR0CSl1vuw5eadX2UKGgGR0BcnuTibUgCaAdN6ANoCEdAkpuubExZdXV9lChoBkdAWm1hoduHe2gHTegDaAhHQJKdCLsKLKp1fZQoaAZHQF8PgvUSZjRoB03oA2gIR0CSoELRrrPddX2UKGgGR0BfC2E4//vOaAdN6ANoCEdAkqQwaisXBXV9lChoBkdAYgMpRXOnmGgHTegDaAhHQJKsMoRZlnR1fZQoaAZHQFvWpQDV6NVoB03oA2gIR0CSrg+qioKldX2UKGgGR8AnACRwIdELaAdNdwFoCEdAkq9zM7lq8HV9lChoBkdAXSXL4etCA2gHTegDaAhHQJLEj7YTTOR1fZQoaAZHQF/qXOnl4khoB03oA2gIR0CSyEoM8YAKdX2UKGgGR0BgDJVQyhzvaAdN6ANoCEdAkstzx9XtB3V9lChoBkdAYEtuNxVAA2gHTegDaAhHQJLSLGp++dt1fZQoaAZHQF5lQ79ycTdoB03oA2gIR0CS3Xk4WDYidX2UKGgGR0BgmmK2rn1WaAdN6ANoCEdAkt/nryDqW3V9lChoBkdAXWz94u9OAWgHTegDaAhHQJLqJ9w3o9t1fZQoaAZHQFZ3n7pFCsxoB03oA2gIR0CS6me0Xxe+dX2UKGgGR0BfkkGVzIV/aAdN6ANoCEdAkvLt6cAimnV9lChoBkfAOB+enQ6ZIGgHTVABaAhHQJL0CMVDa5B1fZQoaAZHQGESyn1nM+xoB03oA2gIR0CS9kcMmWt2dX2UKGgGR0BbbamGdqcmaAdN6ANoCEdAkvdTwpe/pXV9lChoBkdAYTA2VE/jbWgHTegDaAhHQJL51WbPQfJ1fZQoaAZHQFqtmG/N7jVoB03oA2gIR0CS/O1uR9w4dX2UKGgGR8Axoxe9i+cpaAdNOwFoCEdAkwI6/h2nsXV9lChoBkdAYF30yxiXpmgHTegDaAhHQJMDqXSjQAx1fZQoaAZHQFzVTQmeDnNoB03oA2gIR0CTBbSF49owdX2UKGgGR0BgQjgTAWSEaAdN6ANoCEdAkwcDbzshPnV9lChoBkfAQbJYV6/qPmgHTTQBaAhHQJMJAHAymAN1fZQoaAZHQF0A+NLlFMJoB03oA2gIR0CTH22phnandX2UKGgGR0BeSzJdSl3yaAdN6ANoCEdAkyTpGnXNDHV9lChoBkdAYOxYnOSntWgHTegDaAhHQJMpFzYEnst1fZQoaAZHwDy53Y+Sr5toB01KAWgIR0CTLHaz/p+udX2UKGgGR0BgKIm3OObRaAdN6ANoCEdAkzbknPVurXV9lChoBkdAXww9hZyMk2gHTegDaAhHQJM4gX7+DOF1fZQoaAZHQGLZpokAxSJoB03oA2gIR0CTPxSb6P8ydX2UKGgGR0BcTZDArQPaaAdN6ANoCEdAk0enarWAgHV9lChoBkdAYTIz8gpz92gHTegDaAhHQJNJxw71Zkl1fZQoaAZHQGD0s189fTloB03oA2gIR0CTStTLns9kdX2UKGgGR0BdFzRhMJyAaAdN6ANoCEdAk01ftD2JznV9lChoBkdAYUXqJuVHF2gHTegDaAhHQJNQwfHPu5V1fZQoaAZHQFyeUQCjk+5oB03oA2gIR0CTWH4/eLvUdX2UKGgGR0BcA5fD1oQGaAdN6ANoCEdAk1p2SEDhcnV9lChoBkdAX51iay8jA2gHTegDaAhHQJNdQu/UONJ1fZQoaAZHQGCFg9eQdS5oB03oA2gIR0CTXySsbNr1dX2UKGgGR0BQPWGZeAuqaAdN6ANoCEdAk3eZul41P3V9lChoBkdAYEUtkFwDNmgHTegDaAhHQJN7toM8YAN1fZQoaAZHQF826XSjQAxoB03oA2gIR0CTfz4JeE7GdX2UKGgGR0Basa6asp5NaAdN6ANoCEdAk4OKL4vexnV9lChoBkdAazuPsiSq2mgHTX4BaAhHQJOFaLbYbsF1fZQoaAZHQF0Msz2vjfhoB03oA2gIR0CTkfCBPKuCdX2UKGgGR0BeIul41P30aAdN6ANoCEdAk5RPP5YYBXV9lChoBkdAYdHhlUZNwmgHTegDaAhHQJOfNsxfv4N1fZQoaAZHQFqgExZdOZdoB03oA2gIR0CTq+rrPdEcdX2UKGgGR0BeVg4GUwBYaAdN6ANoCEdAk67/r4WUKXV9lChoBkdAXvLR3NcGDGgHTegDaAhHQJOwgbrC3w11fZQoaAZHQFlxGLDQ7cRoB03oA2gIR0CTs/tozvZzdX2UKGgGR0BgSHo3aSLZaAdN6ANoCEdAk7g6tHQQc3V9lChoBkdAYGT+FUQ042gHTegDaAhHQJO9WNT987Z1fZQoaAZHQGAjDOcDr7hoB03oA2gIR0CTvq7PIGQkdX2UKGgGR0BgLxLPD50saAdN6ANoCEdAk8B+Dzyz5XV9lChoBkdANSmDpTuOTGgHTWABaAhHQJPJTNnoPkJ1fZQoaAZHwDT5apxWDHxoB01cAWgIR0CTz/Gnn+yadX2UKGgGR0BhDsqBmPHUaAdN6ANoCEdAk9Wvnr6ciHV9lChoBkdAYiHAP/aQFWgHTegDaAhHQJPZRX3g1m91fZQoaAZHQGfrGetjkMloB00EA2gIR0CT2xlA/s3RdX2UKGgGR0BhCPEbYK6XaAdN6ANoCEdAk9wXHR1HOXV9lChoBkdAV6n1g6U7jmgHTegDaAhHQJPfcUGmk311fZQoaAZHQGBW4XXRPXVoB03oA2gIR0CT4WVawD/3dX2UKGgGR0BSouPvKEFoaAdN6ANoCEdAk+07rs0HhXV9lChoBkdAYCvUI9kjHGgHTegDaAhHQJP5gntv4ud1fZQoaAZHwEDf2g3974VoB01IAWgIR0CT+fSThYNidX2UKGgGR0BfciP6sQumaAdN6ANoCEdAlAJ6R+z+m3V9lChoBkdAYNEAGSpzcWgHTegDaAhHQJQFpiuuA7R1fZQoaAZHQGFywzUI9kloB03oA2gIR0CUCC4s3AEddX2UKGgGR0BiRgxk/bCaaAdN6ANoCEdAlBEjjzZpSXV9lChoBkdAYSrz4DcM3WgHTegDaAhHQJQStDG96C11fZQoaAZHQGEhLdN34bloB03oA2gIR0CUFN4bjtG/dX2UKGgGR0BheWFg2IfsaAdN6ANoCEdAlB9heTmnwXV9lChoBkfAIOT90ihWYGgHTWABaAhHQJQkcDNhVlx1fZQoaAZHQGM4lgMMI/toB03oA2gIR0CUKL2B8QZodX2UKGgGR0Ba1+Cf6Gg0aAdN6ANoCEdAlCrLxVhkRXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7da252b9b880>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7da252b9b910>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7da252b9b9a0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7da252b9ba30>", "_build": "<function ActorCriticPolicy._build at 0x7da252b9bac0>", "forward": "<function ActorCriticPolicy.forward at 0x7da252b9bb50>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7da252b9bbe0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7da252b9bc70>", "_predict": "<function ActorCriticPolicy._predict at 0x7da252b9bd00>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7da252b9bd90>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7da252b9be20>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7da252b9beb0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7da2529ac800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 16384, "_total_timesteps": 10, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1698203171531400856, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK05/T6qT8I/04yHP3sVo77kDdm+luthvgAAAAAAAAAAoDRcPgpyPT+ycAM/v8xOvxaJWb51Nuc9AAAAAAAAAABNyii+Nk2/P/Yibr/qR5E9P+O/PuyFAD8AAAAAAAAAALOQG70j1ls/Z4w5vTzjW79mQ6u9AzlYvQAAAAAAAAAAGs7yvUSusj+7rS6/KhpmvrqP7T16vaQ8AAAAAAAAAACguLs+whJjPz+xEz+MD3K/ekNnPo56OT4AAAAAAAAAAAAI/7wQWJ0/UEPqvV0QxL54Zry8VcavPAAAAAAAAAAAQGI9PpWXuz/Yagc/zwejvrGWnL6y3AW+AAAAAAAAAABKgDC/ZMoGvjkgOb/N08C/++zVPtSlSr4AAIA/AACAP0sAtb5bG7U/nWZzvyTGwL6iNhI/9vGUPgAAAAAAAAAAbQYuvpBqvD8yGEu/Z6N8vaJ/WD6r2mw+AAAAAAAAAACzSie9+9PBP3oEQ769X288lMGjvLZRqTwAAAAAAAAAAIBGhj7T9yc/Aio8P/BLm78vZAG/1nDivgAAAAAAAAAAmuYgvbvkrz/IF02/zMbCvtbgSD074l4+AAAAAAAAAACaTYA+XS53PkNu4j4E4LK/Vms5vuSPg74AAAAAAAAAAN3Vkr4DO0E99pJhPR5SW75c3Os9PlmAvwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -1637.4, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFlgy+HrQgOMAWyUSzyMAXSUR0AnN9YOlO45dX2UKGgGR8BgASHTI/7jaAdLQmgIR0AnPCeEqUeNdX2UKGgGR8B4gldUsFt9aAdLXGgIR0AnTTTfBN21dX2UKGgGR8BqiG/5+H8CaAdLSmgIR0AnVmXgLqlhdX2UKGgGR8BZdL1uivgWaAdLRWgIR0AnW4o7V8TjdX2UKGgGR8B8VaTdLxqgaAdLimgIR0AnXrJKaodddX2UKGgGR8BQ3CAhB7eEaAdLR2gIR0AncihWYF7ldX2UKGgGR8B3Itgc94eLaAdLa2gIR0AndpDeCTUzdX2UKGgGR8Bg20a4tpVTaAdLfWgIR0AnnP69CeEqdX2UKGgGR8BT76n3ta6jaAdLb2gIR0AnuvnKW9lFdX2UKGgGR8BniQdbPhQ4aAdLV2gIR0Any2hIvrWzdX2UKGgGR8Bg/RSiudPMaAdLZmgIR0An4/iYLLIQdX2UKGgGR8B68ZVT72tdaAdLZmgIR0AoB4s3AEdOdX2UKGgGR8BaKZSaVlf7aAdLS2gIR0AoNiiItUXIdX2UKGgGR8BpxXCQ9zOpaAdLQWgIR0AoOxzq8lHCdX2UKGgGR8Bz9iq6vq1PaAdLgGgIR0AoYwFC9h7WdX2UKGgGR8BgO1kxyn1naAdLR2gIR0AocbayrxRVdX2UKGgGR8BYVlxKg7HRaAdLUmgIR0Aofurp7kXDdX2UKGgGR0AdZ0FKTSssaAdLTmgIR0Aojs4T9KmLdX2UKGgGR8B5Q1sdkrf+aAdLW2gIR0Aojq0tyxRmdX2UKGgGR8BXyfQ8fV7QaAdLeGgIR0AoxSPU8V59dX2UKGgGR8B4tH0Zm7J5aAdLUmgIR0Ao21Vo6CDmdX2UKGgGR8BFf/Dk2gnMaAdLgWgIR0ApEoo/iYLLdX2UKGgGR8BQl8p1A7gbaAdLhWgIR0ApIANoakyldX2UKGgGR8BwpcOI68xsaAdLe2gIR0ApJZL7GecydX2UKGgGR8BYRtoexOclaAdLO2gIR0ApfUNKAavSdX2UKGgGR8BfveuFHrhSaAdLaWgIR0Aph8aXKKYRdX2UKGgGR8BxEk+4b0e2aAdLcWgIR0ApmuzQeFL4dX2UKGgGR8B9vWT1TR6XaAdLUmgIR0ApoWpIczZZdX2UKGgGR8BIsBltj0+UaAdLQWgIR0Appm8M/hVEdX2UKGgGR8BTMclHBk7PaAdLQGgIR0AptCngpBomdX2UKGgGR8Bj9MwHqu8saAdLXWgIR0ApwdUbT+efdX2UKGgGR8Bc9+xGDtgKaAdLdGgIR0Ap0/bCaZx8dX2UKGgGR8BYqNLlFMIvaAdLQGgIR0Ap2xMWXTmXdX2UKGgGR8BaokdeY2KmaAdLdmgIR0AqBs6aLGaQdX2UKGgGR8B6w8CJXQt0aAdLX2gIR0AqLfcer+5wdX2UKGgGR8Bj7HSpiqhlaAdLYGgIR0AqcoESuhbodX2UKGgGR8BpTb1yvLX+aAdLgGgIR0Aqhi6QNkOJdX2UKGgGR8BVnV6zE74jaAdLQGgIR0AqooG6f8MvdX2UKGgGR8B6L6saKk2xaAdLWmgIR0AqpuXu3MINdX2UKGgGR8Bf+acd5prUaAdLQmgIR0AqzgogFHJ+dX2UKGgGR8Bwm2wqy4WlaAdLV2gIR0Aq3Jnxri2ldX2UKGgGR8BZmqioKlYVaAdLQ2gIR0Aq2xJNCZ4OdX2UKGgGR8Bhu45cTrVwaAdLU2gIR0Aq+6XjU/fPdX2UKGgGR8Bg/4fuCwr2aAdLY2gIR0ArABYmsvIwdX2UKGgGR8BAnUCA+Y+jaAdLgGgIR0ArBn13+uNhdX2UKGgGR8BWHaYAsCkoaAdLYGgIR0ArBU1hsqJ/dX2UKGgGR8Bw/ocHWz4UaAdLfWgIR0ArCS+xnnMddX2UKGgGR8BtMV36hxo7aAdLcGgIR0ArCkTHsC1adX2UKGgGR8Bidth/iHZcaAdLbWgIR0ArD4xDb8FZdX2UKGgGR8Bqf5/y5I6KaAdLbGgIR0ArQfT1CgK4dX2UKGgGR8BjrDPv8ZUDaAdLZWgIR0ArSrWiDdxidX2UKGgGR8BbQV6JIlMRaAdLP2gIR0ArTxgAp8WsdX2UKGgGR8Bp1SYeDFqBaAdLXWgIR0Ardq9Gqgh9dX2UKGgGR8BUMY7ihnJ1aAdLOGgIR0ArdqfOD8LsdX2UKGgGR8BsLRN9H+ZPaAdLYWgIR0ArfGb1AZ88dX2UKGgGR8B2BElt0mtyaAdLb2gIR0ArgQNkOI69dX2UKGgGR8BVdo64lQdkaAdLPWgIR0ArgIInjQzDdX2UKGgGR8BdKO2VmjCYaAdLOWgIR0Arf4fwI+nqdX2UKGgGR8A/zoq0+kgwaAdLS2gIR0ArkwUQCjk/dX2UKGgGR8BaWAvlEJBxaAdLfGgIR0AroudPLxI8dX2UKGgGR8B9l71pTMq0aAdLZGgIR0AroXUH6dlNdX2UKGgGR8BoN59y925haAdLUmgIR0Arpdu5z5oHdX2UKGgGR8Bm+wsZpBX0aAdLamgIR0ArsE7GNrCWdX2UKGgGR8Bl9ifBeokzaAdLXGgIR0ArsGW2PT5PdX2UKGgGR8Bau7OVxCIDaAdLPmgIR0ArxSsr/bTMdX2UKGgGR8BzqgY/FBIGaAdLamgIR0Ar0SteUpuudX2UKGgGR8BtbkUM5OrRaAdLXWgIR0Ar9AGB4D9wdX2UKGgGR8BXbfkiliz+aAdLW2gIR0Ar+PPszEaVdX2UKGgGR8Btx358BuGcaAdLSGgIR0AsAP91loUSdX2UKGgGR8BJ+WCuloDgaAdLRGgIR0AsApsGgSOBdX2UKGgGR8BY/8WCVbA2aAdLRGgIR0AsAN4qwyIpdX2UKGgGR8BYruWOZLIxaAdLRWgIR0AsN8gIQe3hdX2UKGgGR8B6EdusLfDUaAdLUGgIR0AsQSIP9UCJdX2UKGgGR8Bsqu7BfrrxaAdLa2gIR0AsUSmqHXVcdX2UKGgGR8B0VJuP3i71aAdLamgIR0AsUy5Zr56/dX2UKGgGR8BRlMqjJuEVaAdLb2gIR0AsVJoTPBzndX2UKGgGR8BcWbqlgtvoaAdLZGgIR0AsW9X9zfaYdX2UKGgGR8BtIS++M6zWaAdLVmgIR0AsXdoFmnO0dX2UKGgGR8Bg9qUTtb9qaAdLX2gIR0AsYzUqhDgJdX2UKGgGR8BwQaBBiTdMaAdLS2gIR0Asa7KaG5+ZdX2UKGgGR8BmOBFPSDywaAdLP2gIR0AsgvKU3XI2dX2UKGgGR8BbyQqAjIJaaAdLYmgIR0Asi+ueSSvDdX2UKGgGR8BiuiRjjJdTaAdLdmgIR0Ask1FYuCf6dX2UKGgGR8Bjzaxkd3jdaAdLTmgIR0Aslh86V+qjdX2UKGgGR8BUZMyJsO5KaAdLS2gIR0AslOARTS9edX2UKGgGR8Bhst7KJVKgaAdLOWgIR0AsxTKDCgscdX2UKGgGR8BWIH1OCXhPaAdLVGgIR0As6BFuvUz9dX2UKGgGR8BbsNuDSPU8aAdLbmgIR0As6Dyvs7dSdX2UKGgGR8BTQpNXYDkmaAdLSWgIR0As+3azu4PPdX2UKGgGR8BnCFj/dZaFaAdLVWgIR0AtDRZ2ZApsdX2UKGgGR8BZxnPJJXhgaAdLTGgIR0AtC6I3zcyndX2UKGgGR8BaCARbr1M/aAdLYGgIR0AtCzImw7kodX2UKGgGR8BoD2l2vB8AaAdLhWgIR0AtGvMbFS88dX2UKGgGR8BiuW0VrRBvaAdLRmgIR0AtITNdJJ5FdX2UKGgGR8BZZL+98JD3aAdLY2gIR0AtK6I3zcyndX2UKGgGR8BkNXoLXtjTaAdLa2gIR0AtMfdyksSTdX2UKGgGR8BVGCzollbvaAdLTWgIR0AtOddVvMr3dX2UKGgGR8BY/UM5OrQxaAdLUWgIR0AtPtbcGkeqdX2UKGgGR8BthbzZpSJkaAdLW2gIR0AtUrlNlAeJdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2-1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2f86edebcff9eff49d47d475e9599081e66a54efe7cb3bb0a7d13b8275904534
|
3 |
+
size 147900
|
ppo-LunarLander-v2-1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2-1/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7da252b9b880>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7da252b9b910>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7da252b9b9a0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7da252b9ba30>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7da252b9bac0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7da252b9bb50>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7da252b9bbe0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7da252b9bc70>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7da252b9bd00>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7da252b9bd90>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7da252b9be20>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7da252b9beb0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7da2529ac800>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 16384,
|
25 |
+
"_total_timesteps": 10,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1698203171531400856,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAK05/T6qT8I/04yHP3sVo77kDdm+luthvgAAAAAAAAAAoDRcPgpyPT+ycAM/v8xOvxaJWb51Nuc9AAAAAAAAAABNyii+Nk2/P/Yibr/qR5E9P+O/PuyFAD8AAAAAAAAAALOQG70j1ls/Z4w5vTzjW79mQ6u9AzlYvQAAAAAAAAAAGs7yvUSusj+7rS6/KhpmvrqP7T16vaQ8AAAAAAAAAACguLs+whJjPz+xEz+MD3K/ekNnPo56OT4AAAAAAAAAAAAI/7wQWJ0/UEPqvV0QxL54Zry8VcavPAAAAAAAAAAAQGI9PpWXuz/Yagc/zwejvrGWnL6y3AW+AAAAAAAAAABKgDC/ZMoGvjkgOb/N08C/++zVPtSlSr4AAIA/AACAP0sAtb5bG7U/nWZzvyTGwL6iNhI/9vGUPgAAAAAAAAAAbQYuvpBqvD8yGEu/Z6N8vaJ/WD6r2mw+AAAAAAAAAACzSie9+9PBP3oEQ769X288lMGjvLZRqTwAAAAAAAAAAIBGhj7T9yc/Aio8P/BLm78vZAG/1nDivgAAAAAAAAAAmuYgvbvkrz/IF02/zMbCvtbgSD074l4+AAAAAAAAAACaTYA+XS53PkNu4j4E4LK/Vms5vuSPg74AAAAAAAAAAN3Vkr4DO0E99pJhPR5SW75c3Os9PlmAvwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -1637.4,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwFlgy+HrQgOMAWyUSzyMAXSUR0AnN9YOlO45dX2UKGgGR8BgASHTI/7jaAdLQmgIR0AnPCeEqUeNdX2UKGgGR8B4gldUsFt9aAdLXGgIR0AnTTTfBN21dX2UKGgGR8BqiG/5+H8CaAdLSmgIR0AnVmXgLqlhdX2UKGgGR8BZdL1uivgWaAdLRWgIR0AnW4o7V8TjdX2UKGgGR8B8VaTdLxqgaAdLimgIR0AnXrJKaodddX2UKGgGR8BQ3CAhB7eEaAdLR2gIR0AncihWYF7ldX2UKGgGR8B3Itgc94eLaAdLa2gIR0AndpDeCTUzdX2UKGgGR8Bg20a4tpVTaAdLfWgIR0AnnP69CeEqdX2UKGgGR8BT76n3ta6jaAdLb2gIR0AnuvnKW9lFdX2UKGgGR8BniQdbPhQ4aAdLV2gIR0Any2hIvrWzdX2UKGgGR8Bg/RSiudPMaAdLZmgIR0An4/iYLLIQdX2UKGgGR8B68ZVT72tdaAdLZmgIR0AoB4s3AEdOdX2UKGgGR8BaKZSaVlf7aAdLS2gIR0AoNiiItUXIdX2UKGgGR8BpxXCQ9zOpaAdLQWgIR0AoOxzq8lHCdX2UKGgGR8Bz9iq6vq1PaAdLgGgIR0AoYwFC9h7WdX2UKGgGR8BgO1kxyn1naAdLR2gIR0AocbayrxRVdX2UKGgGR8BYVlxKg7HRaAdLUmgIR0Aofurp7kXDdX2UKGgGR0AdZ0FKTSssaAdLTmgIR0Aojs4T9KmLdX2UKGgGR8B5Q1sdkrf+aAdLW2gIR0Aojq0tyxRmdX2UKGgGR8BXyfQ8fV7QaAdLeGgIR0AoxSPU8V59dX2UKGgGR8B4tH0Zm7J5aAdLUmgIR0Ao21Vo6CDmdX2UKGgGR8BFf/Dk2gnMaAdLgWgIR0ApEoo/iYLLdX2UKGgGR8BQl8p1A7gbaAdLhWgIR0ApIANoakyldX2UKGgGR8BwpcOI68xsaAdLe2gIR0ApJZL7GecydX2UKGgGR8BYRtoexOclaAdLO2gIR0ApfUNKAavSdX2UKGgGR8BfveuFHrhSaAdLaWgIR0Aph8aXKKYRdX2UKGgGR8BxEk+4b0e2aAdLcWgIR0ApmuzQeFL4dX2UKGgGR8B9vWT1TR6XaAdLUmgIR0ApoWpIczZZdX2UKGgGR8BIsBltj0+UaAdLQWgIR0Appm8M/hVEdX2UKGgGR8BTMclHBk7PaAdLQGgIR0AptCngpBomdX2UKGgGR8Bj9MwHqu8saAdLXWgIR0ApwdUbT+efdX2UKGgGR8Bc9+xGDtgKaAdLdGgIR0Ap0/bCaZx8dX2UKGgGR8BYqNLlFMIvaAdLQGgIR0Ap2xMWXTmXdX2UKGgGR8BaokdeY2KmaAdLdmgIR0AqBs6aLGaQdX2UKGgGR8B6w8CJXQt0aAdLX2gIR0AqLfcer+5wdX2UKGgGR8Bj7HSpiqhlaAdLYGgIR0AqcoESuhbodX2UKGgGR8BpTb1yvLX+aAdLgGgIR0Aqhi6QNkOJdX2UKGgGR8BVnV6zE74jaAdLQGgIR0AqooG6f8MvdX2UKGgGR8B6L6saKk2xaAdLWmgIR0AqpuXu3MINdX2UKGgGR8Bf+acd5prUaAdLQmgIR0AqzgogFHJ+dX2UKGgGR8Bwm2wqy4WlaAdLV2gIR0Aq3Jnxri2ldX2UKGgGR8BZmqioKlYVaAdLQ2gIR0Aq2xJNCZ4OdX2UKGgGR8Bhu45cTrVwaAdLU2gIR0Aq+6XjU/fPdX2UKGgGR8Bg/4fuCwr2aAdLY2gIR0ArABYmsvIwdX2UKGgGR8BAnUCA+Y+jaAdLgGgIR0ArBn13+uNhdX2UKGgGR8BWHaYAsCkoaAdLYGgIR0ArBU1hsqJ/dX2UKGgGR8Bw/ocHWz4UaAdLfWgIR0ArCS+xnnMddX2UKGgGR8BtMV36hxo7aAdLcGgIR0ArCkTHsC1adX2UKGgGR8Bidth/iHZcaAdLbWgIR0ArD4xDb8FZdX2UKGgGR8Bqf5/y5I6KaAdLbGgIR0ArQfT1CgK4dX2UKGgGR8BjrDPv8ZUDaAdLZWgIR0ArSrWiDdxidX2UKGgGR8BbQV6JIlMRaAdLP2gIR0ArTxgAp8WsdX2UKGgGR8Bp1SYeDFqBaAdLXWgIR0Ardq9Gqgh9dX2UKGgGR8BUMY7ihnJ1aAdLOGgIR0ArdqfOD8LsdX2UKGgGR8BsLRN9H+ZPaAdLYWgIR0ArfGb1AZ88dX2UKGgGR8B2BElt0mtyaAdLb2gIR0ArgQNkOI69dX2UKGgGR8BVdo64lQdkaAdLPWgIR0ArgIInjQzDdX2UKGgGR8BdKO2VmjCYaAdLOWgIR0Arf4fwI+nqdX2UKGgGR8A/zoq0+kgwaAdLS2gIR0ArkwUQCjk/dX2UKGgGR8BaWAvlEJBxaAdLfGgIR0AroudPLxI8dX2UKGgGR8B9l71pTMq0aAdLZGgIR0AroXUH6dlNdX2UKGgGR8BoN59y925haAdLUmgIR0Arpdu5z5oHdX2UKGgGR8Bm+wsZpBX0aAdLamgIR0ArsE7GNrCWdX2UKGgGR8Bl9ifBeokzaAdLXGgIR0ArsGW2PT5PdX2UKGgGR8Bau7OVxCIDaAdLPmgIR0ArxSsr/bTMdX2UKGgGR8BzqgY/FBIGaAdLamgIR0Ar0SteUpuudX2UKGgGR8BtbkUM5OrRaAdLXWgIR0Ar9AGB4D9wdX2UKGgGR8BXbfkiliz+aAdLW2gIR0Ar+PPszEaVdX2UKGgGR8Btx358BuGcaAdLSGgIR0AsAP91loUSdX2UKGgGR8BJ+WCuloDgaAdLRGgIR0AsApsGgSOBdX2UKGgGR8BY/8WCVbA2aAdLRGgIR0AsAN4qwyIpdX2UKGgGR8BYruWOZLIxaAdLRWgIR0AsN8gIQe3hdX2UKGgGR8B6EdusLfDUaAdLUGgIR0AsQSIP9UCJdX2UKGgGR8Bsqu7BfrrxaAdLa2gIR0AsUSmqHXVcdX2UKGgGR8B0VJuP3i71aAdLamgIR0AsUy5Zr56/dX2UKGgGR8BRlMqjJuEVaAdLb2gIR0AsVJoTPBzndX2UKGgGR8BcWbqlgtvoaAdLZGgIR0AsW9X9zfaYdX2UKGgGR8BtIS++M6zWaAdLVmgIR0AsXdoFmnO0dX2UKGgGR8Bg9qUTtb9qaAdLX2gIR0AsYzUqhDgJdX2UKGgGR8BwQaBBiTdMaAdLS2gIR0Asa7KaG5+ZdX2UKGgGR8BmOBFPSDywaAdLP2gIR0AsgvKU3XI2dX2UKGgGR8BbyQqAjIJaaAdLYmgIR0Asi+ueSSvDdX2UKGgGR8BiuiRjjJdTaAdLdmgIR0Ask1FYuCf6dX2UKGgGR8Bjzaxkd3jdaAdLTmgIR0Aslh86V+qjdX2UKGgGR8BUZMyJsO5KaAdLS2gIR0AslOARTS9edX2UKGgGR8Bhst7KJVKgaAdLOWgIR0AsxTKDCgscdX2UKGgGR8BWIH1OCXhPaAdLVGgIR0As6BFuvUz9dX2UKGgGR8BbsNuDSPU8aAdLbmgIR0As6Dyvs7dSdX2UKGgGR8BTQpNXYDkmaAdLSWgIR0As+3azu4PPdX2UKGgGR8BnCFj/dZaFaAdLVWgIR0AtDRZ2ZApsdX2UKGgGR8BZxnPJJXhgaAdLTGgIR0AtC6I3zcyndX2UKGgGR8BaCARbr1M/aAdLYGgIR0AtCzImw7kodX2UKGgGR8BoD2l2vB8AaAdLhWgIR0AtGvMbFS88dX2UKGgGR8BiuW0VrRBvaAdLRmgIR0AtITNdJJ5FdX2UKGgGR8BZZL+98JD3aAdLY2gIR0AtK6I3zcyndX2UKGgGR8BkNXoLXtjTaAdLa2gIR0AtMfdyksSTdX2UKGgGR8BVGCzollbvaAdLTWgIR0AtOddVvMr3dX2UKGgGR8BY/UM5OrQxaAdLUWgIR0AtPtbcGkeqdX2UKGgGR8BthbzZpSJkaAdLW2gIR0AtUrlNlAeJdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 4,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 256,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2-1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ef92ec7bf40ef1c114f20a659ae1f0fdeaa2afa5389f0bae68c00168ad291f62
|
3 |
+
size 88362
|
ppo-LunarLander-v2-1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2fcddef57411d6079b1739c3fcc08793fb418552689bde3577db8f107e74dffa
|
3 |
+
size 43762
|
ppo-LunarLander-v2-1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2-1/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.23.5
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -163.03661754149942, "std_reward": 104.2771307510438, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-25T03:06:24.975671"}
|