michaelfeil
commited on
Commit
·
364545a
1
Parent(s):
a06b8c9
Upload sentence-transformers/all-MiniLM-L6-v2 ctranslate fp16 weights
Browse files
README.md
CHANGED
@@ -44,31 +44,30 @@ pip install hf-hub-ctranslate2>=2.11.0 ctranslate2>=3.16.0
|
|
44 |
```python
|
45 |
# from transformers import AutoTokenizer
|
46 |
model_name = "michaelfeil/ct2fast-all-MiniLM-L6-v2"
|
47 |
-
model_name_orig=sentence-transformers/all-MiniLM-L6-v2
|
48 |
|
49 |
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
|
50 |
model = EncoderCT2fromHfHub(
|
51 |
# load in int8 on CUDA
|
52 |
model_name_or_path=model_name,
|
53 |
device="cuda",
|
54 |
-
compute_type="int8_float16"
|
55 |
)
|
56 |
outputs = model.generate(
|
57 |
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
|
58 |
max_length=64,
|
59 |
-
)
|
60 |
-
# perform downstream tasks on outputs
|
61 |
outputs["pooler_output"]
|
62 |
outputs["last_hidden_state"]
|
63 |
outputs["attention_mask"]
|
64 |
|
65 |
# alternative, use SentenceTransformer Mix-In
|
66 |
# for end-to-end Sentence embeddings generation
|
67 |
-
# not pulling from this repo
|
68 |
|
69 |
from hf_hub_ctranslate2 import CT2SentenceTransformer
|
70 |
model = CT2SentenceTransformer(
|
71 |
-
model_name_orig, compute_type="int8_float16", device="cuda"
|
72 |
)
|
73 |
embeddings = model.encode(
|
74 |
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
|
|
|
44 |
```python
|
45 |
# from transformers import AutoTokenizer
|
46 |
model_name = "michaelfeil/ct2fast-all-MiniLM-L6-v2"
|
47 |
+
model_name_orig="sentence-transformers/all-MiniLM-L6-v2"
|
48 |
|
49 |
from hf_hub_ctranslate2 import EncoderCT2fromHfHub
|
50 |
model = EncoderCT2fromHfHub(
|
51 |
# load in int8 on CUDA
|
52 |
model_name_or_path=model_name,
|
53 |
device="cuda",
|
54 |
+
compute_type="int8_float16"
|
55 |
)
|
56 |
outputs = model.generate(
|
57 |
text=["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
|
58 |
max_length=64,
|
59 |
+
) # perform downstream tasks on outputs
|
|
|
60 |
outputs["pooler_output"]
|
61 |
outputs["last_hidden_state"]
|
62 |
outputs["attention_mask"]
|
63 |
|
64 |
# alternative, use SentenceTransformer Mix-In
|
65 |
# for end-to-end Sentence embeddings generation
|
66 |
+
# (not pulling from this CT2fast-HF repo)
|
67 |
|
68 |
from hf_hub_ctranslate2 import CT2SentenceTransformer
|
69 |
model = CT2SentenceTransformer(
|
70 |
+
model_name_orig, compute_type="int8_float16", device="cuda"
|
71 |
)
|
72 |
embeddings = model.encode(
|
73 |
["I like soccer", "I like tennis", "The eiffel tower is in Paris"],
|