michaelfeil commited on
Commit
38251c1
·
1 Parent(s): 7eff953

Upload VMware/open-llama-13b-open-instruct ctranslate fp16 weights

Browse files
README.md ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - ctranslate2
4
+ - int8
5
+ - float16
6
+
7
+ license: cc
8
+ datasets:
9
+ - VMware/open-instruct-v1-oasst-dolly-hhrlhf
10
+ language:
11
+ - en
12
+ library_name: transformers
13
+ pipeline_tag: text-generation
14
+ ---
15
+ # # Fast-Inference with Ctranslate2
16
+ Speedup inference while reducing memory by 2x-4x using int8 inference in C++ on CPU or GPU.
17
+
18
+ quantized version of [VMware/open-llama-13b-open-instruct](https://huggingface.co/VMware/open-llama-13b-open-instruct)
19
+ ```bash
20
+ pip install hf-hub-ctranslate2>=2.12.0 ctranslate2>=3.16.0
21
+ ```
22
+
23
+ ```python
24
+ # from transformers import AutoTokenizer
25
+ model_name = "michaelfeil/ct2fast-open-llama-13b-open-instruct"
26
+
27
+
28
+ from hf_hub_ctranslate2 import GeneratorCT2fromHfHub
29
+ model = GeneratorCT2fromHfHub(
30
+ # load in int8 on CUDA
31
+ model_name_or_path=model_name,
32
+ device="cuda",
33
+ compute_type="int8_float16",
34
+ # tokenizer=AutoTokenizer.from_pretrained("{ORG}/{NAME}")
35
+ )
36
+ outputs = model.generate(
37
+ text=["def fibonnaci(", "User: How are you doing? Bot:"],
38
+ max_length=64,
39
+ include_prompt_in_result=False
40
+ )
41
+ print(outputs)
42
+ ```
43
+
44
+ Checkpoint compatible to [ctranslate2>=3.16.0](https://github.com/OpenNMT/CTranslate2)
45
+ and [hf-hub-ctranslate2>=2.12.0](https://github.com/michaelfeil/hf-hub-ctranslate2)
46
+ - `compute_type=int8_float16` for `device="cuda"`
47
+ - `compute_type=int8` for `device="cpu"`
48
+
49
+ Converted on 2023-06-27 using
50
+ ```
51
+ ct2-transformers-converter --model VMware/open-llama-13b-open-instruct --output_dir ~/tmp-ct2fast-open-llama-13b-open-instruct --force --copy_files README.md tokenizer_config.json generation_config.json special_tokens_map.json .gitattributes --quantization int8_float16 --trust_remote_code
52
+ ```
53
+
54
+ # Licence and other remarks:
55
+ This is just a quantized version. Licence conditions are intended to be idential to original huggingface repo.
56
+
57
+ # Original description
58
+
59
+
60
+ # VMware/open-llama-13B-open-instruct
61
+ Instruction-tuned version of the fully trained Open LLama 13B model. The model is open for <b>COMMERCIAL USE</b>. <br>
62
+
63
+ <b> NOTE </b> : The model was trained using the Alpaca prompt template \
64
+ <b> NOTE </b> : Fast tokenizer results in incorrect encoding, set the ```use_fast = False``` parameter, when instantiating the tokenizer\
65
+ <b> NOTE </b> : The model might struggle with code as the tokenizer merges multiple spaces
66
+
67
+ ## License
68
+ - <b>Commercially Viable </b>
69
+ - Instruction dataset, [VMware/open-instruct-v1-oasst-dolly-hhrlhf](https://huggingface.co/datasets/VMware/open-instruct-v1-oasst-dolly-hhrlhf) is under cc-by-sa-3.0
70
+ - Language Model, ([openlm-research/open_llama_13b](https://huggingface.co/openlm-research/open_llama_13b)) is under apache-2.0
71
+
72
+
73
+ ## Nomenclature
74
+
75
+ - Model : Open-llama
76
+ - Model Size: 13B parameters
77
+ - Dataset: Open-instruct-v1 (oasst,dolly, hhrlhf)
78
+
79
+ ## Use in Transformers
80
+
81
+ ```
82
+ import os
83
+ import torch
84
+ from transformers import AutoModelForCausalLM, AutoTokenizer
85
+
86
+ model_name = 'VMware/open-llama-13b-open-instruct'
87
+
88
+
89
+ tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=False)
90
+
91
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map='sequential')
92
+
93
+ prompt_template = "Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"
94
+
95
+ prompt = 'Explain in simple terms how the attention mechanism of a transformer model works'
96
+
97
+
98
+ inputt = prompt_template.format(instruction= prompt)
99
+ input_ids = tokenizer(inputt, return_tensors="pt").input_ids.to("cuda")
100
+
101
+ output1 = model.generate(input_ids, max_length=512)
102
+ input_length = input_ids.shape[1]
103
+ output1 = output1[:, input_length:]
104
+ output = tokenizer.decode(output1[0])
105
+
106
+ print(output)
107
+ ```
108
+
109
+ ## Finetuning details
110
+ The finetuning scripts will be available in our [RAIL Github Repository](https://github.com/vmware-labs/research-and-development-artificial-intelligence-lab/tree/main/instruction-tuning)
111
+ ## Evaluation
112
+
113
+ <B>TODO</B>
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/gollapudit/peft/open_llama_13b_open_instruct",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_position_embeddings": 2048,
13
+ "model_type": "llama",
14
+ "num_attention_heads": 40,
15
+ "num_hidden_layers": 40,
16
+ "pad_token_id": 0,
17
+ "rms_norm_eps": 1e-06,
18
+ "tie_word_embeddings": false,
19
+ "torch_dtype": "float16",
20
+ "transformers_version": "4.28.1",
21
+ "use_cache": true,
22
+ "vocab_size": 32000,
23
+ "bos_token": "<s>",
24
+ "eos_token": "</s>",
25
+ "layer_norm_epsilon": null,
26
+ "unk_token": "<unk>"
27
+ }
generation_config.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "pad_token_id": 0,
6
+ "transformers_version": "4.28.1"
7
+ }
model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fdbda702db933751d9e9bfc3b7be138c71c7d9f48f3239c905931f385872e40e
3
+ size 13025087966
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": true,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": true,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": true,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "model_max_length": 2048,
22
+ "pad_token": null,
23
+ "padding_side": "right",
24
+ "sp_model_kwargs": {},
25
+ "tokenizer_class": "LlamaTokenizer",
26
+ "unk_token": {
27
+ "__type": "AddedToken",
28
+ "content": "<unk>",
29
+ "lstrip": false,
30
+ "normalized": true,
31
+ "rstrip": false,
32
+ "single_word": false
33
+ }
34
+ }
vocabulary.json ADDED
The diff for this file is too large to render. See raw diff