chuhac commited on
Commit
11c76d3
·
verified ·
1 Parent(s): 27005c2

add remote code and hf-format "pytorch_model.bin"

Browse files

Modified by chuhac for a timm-free implementation
Model can be directly imported with ``from_pretrained`` and ``trust_remote_code = True`` in the huggingface format
Diff from HF CLIP Implementation:
1. pre-norm instead of post-norm in Vision Tower (the original implementation is right but the module registration order is misleading)
2. CLS Pooling with MLP in Text Tower
3. Remove pre norm in Vision Tower
4. CNN bias in Vision Tower
5. Change layer_norm eps from 1e-5 to 1e-12, which introduce a little numerical variations (1e-5 level)

config.json ADDED
@@ -0,0 +1,103 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "",
3
+ "architectures": [
4
+ "BiomedCLIPModel"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_biomed_clip.BiomedCLIPConfig",
8
+ "AutoProcessor": "processing_biomed_clip.BiomedCLIPProcessor",
9
+ "AutoModel": "modeling_biomed_clip.BiomedCLIPModel",
10
+ "AutoModelForImageClassification": "modeling_biomed_clip.BiomedCLIPForImageClassification"
11
+ },
12
+ "initializer_factor": 1.0,
13
+ "logit_scale_init_value": 4.4454,
14
+ "model_type": "clip",
15
+ "projection_dim": 512,
16
+ "text_config": {
17
+ "attention_probs_dropout_prob": 0.1,
18
+ "gradient_checkpointing": false,
19
+ "hidden_act": "gelu",
20
+ "hidden_dropout_prob": 0.1,
21
+ "hidden_size": 768,
22
+ "initializer_range": 0.02,
23
+ "intermediate_size": 3072,
24
+ "layer_norm_eps": 1e-12,
25
+ "max_position_embeddings": 512,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 12,
28
+ "num_hidden_layers": 12,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "absolute",
31
+ "transformers_version": "4.6.0.dev0",
32
+ "type_vocab_size": 2,
33
+ "use_cache": true,
34
+ "vocab_size": 30522
35
+ },
36
+ "text_config_dict": {
37
+ "attention_probs_dropout_prob": 0.1,
38
+ "gradient_checkpointing": false,
39
+ "hidden_act": "gelu",
40
+ "hidden_dropout_prob": 0.1,
41
+ "hidden_size": 768,
42
+ "initializer_range": 0.02,
43
+ "intermediate_size": 3072,
44
+ "layer_norm_eps": 1e-12,
45
+ "max_position_embeddings": 512,
46
+ "model_type": "bert",
47
+ "num_attention_heads": 12,
48
+ "num_hidden_layers": 12,
49
+ "pad_token_id": 0,
50
+ "position_embedding_type": "absolute",
51
+ "transformers_version": "4.6.0.dev0",
52
+ "type_vocab_size": 2,
53
+ "use_cache": true,
54
+ "vocab_size": 30522
55
+ },
56
+ "text_projection_config": {
57
+ "hidden_size": 768,
58
+ "intermediate_size": 640,
59
+ "projection_dim": 512,
60
+ "hidden_act": "gelu"
61
+ },
62
+ "text_projection_config_dict": {
63
+ "hidden_size": 768,
64
+ "intermediate_size": 640,
65
+ "projection_dim": 512,
66
+ "hidden_act": "gelu",
67
+ "num_hidden_layers": 2
68
+ },
69
+ "torch_dtype": "float32",
70
+ "transformers_version": null,
71
+ "vision_config": {
72
+ "attention_probs_dropout_prob": 0.0,
73
+ "hidden_act": "gelu",
74
+ "hidden_dropout_prob": 0.0,
75
+ "hidden_size": 768,
76
+ "image_size": 224,
77
+ "initializer_range": 0.02,
78
+ "intermediate_size": 3072,
79
+ "layer_norm_eps": 1e-12,
80
+ "model_type": "vit",
81
+ "num_attention_heads": 12,
82
+ "num_channels": 3,
83
+ "num_hidden_layers": 12,
84
+ "patch_size": 16,
85
+ "qkv_bias": true
86
+ },
87
+ "vision_config_dict": {
88
+ "attention_probs_dropout_prob": 0.0,
89
+ "hidden_act": "gelu",
90
+ "hidden_dropout_prob": 0.0,
91
+ "hidden_size": 768,
92
+ "image_size": 224,
93
+ "initializer_range": 0.02,
94
+ "intermediate_size": 3072,
95
+ "layer_norm_eps": 1e-12,
96
+ "model_type": "vit",
97
+ "num_attention_heads": 12,
98
+ "num_channels": 3,
99
+ "num_hidden_layers": 12,
100
+ "patch_size": 16,
101
+ "qkv_bias": true
102
+ }
103
+ }
configuration_biomed_clip.py ADDED
@@ -0,0 +1,60 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from typing import *
3
+ from transformers.configuration_utils import PretrainedConfig
4
+ from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
5
+
6
+ class BiomedCLIPTextProjectionConfig(PretrainedConfig):
7
+ def __init__(
8
+ self,
9
+ hidden_size=768,
10
+ intermediate_size=640,
11
+ projection_dim=512,
12
+ num_hidden_layers=2,
13
+ **kwargs,
14
+ ):
15
+ super().__init__(**kwargs)
16
+
17
+ self.hidden_size = hidden_size
18
+ self.intermediate_size = intermediate_size
19
+ self.projection_dim = projection_dim
20
+ self.num_hidden_layers = num_hidden_layers
21
+
22
+ @classmethod
23
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
24
+ cls._set_token_in_kwargs(kwargs)
25
+
26
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
27
+
28
+ # get the vision config dict if we are loading from CLIPConfig
29
+ if config_dict.get("model_type") == "clip":
30
+ config_dict = config_dict["text_projection_config"]
31
+
32
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
33
+ logger.warning(
34
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
35
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
36
+ )
37
+
38
+ return cls.from_dict(config_dict, **kwargs)
39
+
40
+ class BiomedCLIPConfig(CLIPConfig):
41
+ def __init__(
42
+ self, text_config=None, text_projection_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
43
+ ):
44
+ # If `_config_dict` exist, we use them for the backward compatibility.
45
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
46
+ # of confusion!).
47
+ super().__init__(text_config, vision_config, projection_dim, logit_scale_init_value, **kwargs)
48
+
49
+ text_projection_config_dict = kwargs.pop("text_projection_config_dict", None)
50
+ if text_projection_config is None:
51
+ if text_projection_config_dict is not None:
52
+ text_projection_config = {}
53
+
54
+ _text_projection_config_dict = BiomedCLIPTextProjectionConfig(**text_projection_config_dict)
55
+
56
+ text_projection_config.update(_text_projection_config_dict)
57
+ else:
58
+ text_projection_config = BiomedCLIPTextProjectionConfig(**text_projection_config)
59
+
60
+ self.text_projection_config = text_projection_config
modeling_biomed_clip.py ADDED
@@ -0,0 +1,938 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Modified by chuhac for a timm-free implementation
3
+ # Model can be directly imported with ``from_pretrained`` and ``trust_remote_code = True`` in the huggingface format
4
+ # Diff from HF CLIP Implementation:
5
+ # 1. pre-norm instead of post-norm in Vision Tower (the original implementation is right but the module registration order is misleading)
6
+ # 2. CLS Pooling with MLP in Text Tower
7
+ # 3. Remove pre norm in Vision Tower
8
+ # 4. CNN bias in Vision Tower
9
+ # 5. Change layer_norm eps from 1e-5 to 1e-12, which introduce a little numerical variations (1e-5 level)
10
+ ## ******************************** ##
11
+ # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
12
+ # Licensed under the Apache License, Version 2.0 (the "License");
13
+ # you may not use this file except in compliance with the License.
14
+ # You may obtain a copy of the License at
15
+ #
16
+ # http://www.apache.org/licenses/LICENSE-2.0
17
+ #
18
+ # Unless required by applicable law or agreed to in writing, software
19
+ # distributed under the License is distributed on an "AS IS" BASIS,
20
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
21
+ # See the License for the specific language governing permissions and
22
+ # limitations under the License.
23
+ """ PyTorch BiomedCLIP model """
24
+ """ No need for timm or open-clip-torch """
25
+
26
+
27
+ from dataclasses import dataclass
28
+ from typing import Any, Optional, Tuple, Union, List
29
+
30
+ import math
31
+ import torch
32
+ import torch.utils.checkpoint
33
+ from torch import nn
34
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
35
+
36
+ from transformers.activations import ACT2FN
37
+ from transformers.modeling_attn_mask_utils import _create_4d_causal_attention_mask, _prepare_4d_attention_mask
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutput,
40
+ BaseModelOutputWithPooling,
41
+ ImageClassifierOutput,
42
+ BaseModelOutputWithPoolingAndCrossAttentions,
43
+ BaseModelOutputWithPastAndCrossAttentions
44
+ )
45
+ from transformers.modeling_utils import PreTrainedModel
46
+ from transformers.utils import (
47
+ ModelOutput,
48
+ add_code_sample_docstrings,
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ logging,
52
+ replace_return_docstrings,
53
+ )
54
+ from transformers.models.clip.configuration_clip import CLIPConfig, CLIPTextConfig, CLIPVisionConfig
55
+ from transformers.models.clip.modeling_clip import *
56
+
57
+ from .configuration_biomed_clip import BiomedCLIPTextProjectionConfig, BiomedCLIPConfig
58
+
59
+
60
+ logger = logging.get_logger(__name__)
61
+
62
+
63
+
64
+ # contrastive loss function, adapted from
65
+ # https://sachinruk.github.io/blog/2021-03-07-clip.html
66
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
67
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
68
+
69
+
70
+ def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
71
+ caption_loss = contrastive_loss(similarity)
72
+ image_loss = contrastive_loss(similarity.t())
73
+ return (caption_loss + image_loss) / 2.0
74
+
75
+
76
+ class BiomedCLIPVisionEmbeddings(CLIPVisionEmbeddings):
77
+ def __init__(self, config: CLIPVisionConfig):
78
+ super().__init__(config)
79
+
80
+ self.patch_embedding = nn.Conv2d(
81
+ in_channels=config.num_channels,
82
+ out_channels=self.embed_dim,
83
+ kernel_size=self.patch_size,
84
+ stride=self.patch_size,
85
+ # True in open_clip
86
+ bias=True,
87
+ )
88
+
89
+ # TODO
90
+ class BiomedCLIPTextEmbeddings(nn.Module):
91
+ def __init__(self, config: CLIPTextConfig):
92
+ super().__init__()
93
+ embed_dim = config.hidden_size
94
+
95
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
96
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
97
+ self.token_type_embedding = nn.Embedding(config.type_vocab_size, embed_dim)
98
+
99
+ self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
100
+ self.dropout = nn.Dropout(config.hidden_dropout_prob)
101
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
102
+ self.position_embedding_type = getattr(config, "position_embedding_type", "absolute")
103
+
104
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
105
+ self.register_buffer(
106
+ "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
107
+ )
108
+ self.register_buffer(
109
+ "token_type_ids", torch.zeros(self.position_ids.size(), dtype=torch.long), persistent=False
110
+ )
111
+
112
+ def forward(
113
+ self,
114
+ input_ids: Optional[torch.LongTensor] = None,
115
+ token_type_ids: Optional[torch.LongTensor] = None,
116
+ position_ids: Optional[torch.LongTensor] = None,
117
+ inputs_embeds: Optional[torch.FloatTensor] = None,
118
+ past_key_values_length: int = 0,
119
+ ) -> torch.Tensor:
120
+
121
+ if input_ids is not None:
122
+ input_shape = input_ids.size()
123
+ else:
124
+ input_shape = inputs_embeds.size()[:-1]
125
+
126
+ seq_length = input_shape[1]
127
+
128
+ if position_ids is None:
129
+ position_ids = self.position_ids[:, past_key_values_length : seq_length + past_key_values_length]
130
+
131
+ # Setting the token_type_ids to the registered buffer in constructor where it is all zeros, which usually occurs
132
+ # when its auto-generated, registered buffer helps users when tracing the model without passing token_type_ids, solves
133
+ # issue #5664
134
+ if token_type_ids is None:
135
+ if hasattr(self, "token_type_ids"):
136
+ buffered_token_type_ids = self.token_type_ids[:, :seq_length]
137
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(input_shape[0], seq_length)
138
+ token_type_ids = buffered_token_type_ids_expanded
139
+ else:
140
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=self.position_ids.device)
141
+
142
+ if inputs_embeds is None:
143
+ inputs_embeds = self.token_embedding(input_ids)
144
+ token_type_embeddings = self.token_type_embedding(token_type_ids)
145
+
146
+ embeddings = inputs_embeds + token_type_embeddings
147
+ if self.position_embedding_type == "absolute":
148
+ position_embeddings = self.position_embedding(position_ids)
149
+ embeddings += position_embeddings
150
+
151
+ embeddings = self.layer_norm(embeddings)
152
+ embeddings = self.dropout(embeddings)
153
+ return embeddings
154
+
155
+
156
+ class BiomedCLIPAttention(nn.Module):
157
+ def __init__(self, config, position_embedding_type=None):
158
+ super().__init__()
159
+ super().__init__()
160
+ self.config = config
161
+ self.embed_dim = config.hidden_size
162
+ self.num_heads = config.num_attention_heads
163
+ self.head_dim = self.embed_dim // self.num_heads
164
+ if self.head_dim * self.num_heads != self.embed_dim:
165
+ raise ValueError(
166
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
167
+ f" {self.num_heads})."
168
+ )
169
+ self.scale = self.head_dim**-0.5
170
+ self.dropout = nn.Dropout(config.attention_dropout)
171
+
172
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim)
173
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim)
174
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim)
175
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim)
176
+
177
+ def transpose_for_scores(self, x: torch.Tensor) -> torch.Tensor:
178
+ new_x_shape = x.size()[:-1] + (self.num_heads, self.head_dim)
179
+ x = x.view(new_x_shape)
180
+ return x.permute(0, 2, 1, 3)
181
+
182
+ def forward(
183
+ self,
184
+ hidden_states: torch.Tensor,
185
+ attention_mask: Optional[torch.FloatTensor] = None,
186
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
187
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
188
+ past_key_value: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
189
+ output_attentions: Optional[bool] = False,
190
+ ) -> Tuple[torch.Tensor]:
191
+
192
+ mixed_query_layer = self.q_proj(hidden_states)
193
+
194
+ # If this is instantiated as a cross-attention module, the keys
195
+ # and values come from an encoder; the attention mask needs to be
196
+ # such that the encoder's padding tokens are not attended to.
197
+ is_cross_attention = encoder_hidden_states is not None
198
+
199
+ key_layer = self.transpose_for_scores(self.k_proj(hidden_states))
200
+ value_layer = self.transpose_for_scores(self.v_proj(hidden_states))
201
+
202
+ query_layer = self.transpose_for_scores(mixed_query_layer)
203
+
204
+
205
+ # Take the dot product between "query" and "key" to get the raw attention scores.
206
+ attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
207
+
208
+
209
+ attention_scores = attention_scores / math.sqrt(self.head_dim)
210
+ if attention_mask is not None:
211
+ # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
212
+ attention_scores = attention_scores + attention_mask
213
+
214
+ # Normalize the attention scores to probabilities.
215
+ attention_probs = nn.functional.softmax(attention_scores, dim=-1)
216
+
217
+ # This is actually dropping out entire tokens to attend to, which might
218
+ # seem a bit unusual, but is taken from the original Transformer paper.
219
+ attention_probs = self.dropout(attention_probs)
220
+
221
+
222
+ context_layer = torch.matmul(attention_probs, value_layer)
223
+
224
+ context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
225
+ new_context_layer_shape = context_layer.size()[:-2] + (self.embed_dim,)
226
+ context_layer = context_layer.view(new_context_layer_shape).contiguous()
227
+
228
+ outputs = self.out_proj(context_layer)
229
+ return outputs, attention_probs
230
+
231
+
232
+
233
+
234
+ class BiomedCLIPEncoderLayer(nn.Module):
235
+ def __init__(self, config: BiomedCLIPConfig, norm='pre'):
236
+ super().__init__()
237
+ self.embed_dim = config.hidden_size
238
+ # pre-norm
239
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
240
+ self.self_attn = BiomedCLIPAttention(config)
241
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
242
+ self.mlp = CLIPMLP(config)
243
+ self.norm = norm
244
+
245
+ if self.norm == 'pre':
246
+ self.forward = self.pre_norm_forward
247
+ elif self.norm == 'post':
248
+ self.forward = self.post_norm_forward
249
+
250
+
251
+ def pre_norm_forward(
252
+ self,
253
+ hidden_states: torch.Tensor,
254
+ attention_mask: torch.Tensor,
255
+ output_attentions: Optional[bool] = False,
256
+ ) -> Tuple[torch.FloatTensor]:
257
+ """
258
+ Args:
259
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
260
+ attention_mask (`torch.FloatTensor`): attention mask of size
261
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
262
+ `(config.encoder_attention_heads,)`.
263
+ output_attentions (`bool`, *optional*):
264
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
265
+ returned tensors for more detail.
266
+ """
267
+ residual = hidden_states
268
+
269
+ hidden_states = self.layer_norm1(hidden_states)
270
+ hidden_states, attn_weights = self.self_attn(
271
+ hidden_states=hidden_states,
272
+ attention_mask=attention_mask,
273
+ output_attentions=output_attentions,
274
+ )
275
+ hidden_states = residual + hidden_states
276
+
277
+ residual = hidden_states
278
+ hidden_states = self.layer_norm2(hidden_states)
279
+ hidden_states = self.mlp(hidden_states)
280
+ hidden_states = residual + hidden_states
281
+
282
+ outputs = (hidden_states,)
283
+
284
+ if output_attentions:
285
+ outputs += (attn_weights,)
286
+
287
+ return outputs
288
+
289
+ def post_norm_forward(
290
+ self,
291
+ hidden_states: torch.Tensor,
292
+ attention_mask: torch.Tensor,
293
+ output_attentions: Optional[bool] = False,
294
+ ) -> Tuple[torch.FloatTensor]:
295
+ """
296
+ Args:
297
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
298
+ attention_mask (`torch.FloatTensor`): attention mask of size
299
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
300
+ `(config.encoder_attention_heads,)`.
301
+ output_attentions (`bool`, *optional*):
302
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
303
+ returned tensors for more detail.
304
+ """
305
+ residual = hidden_states
306
+
307
+ hidden_states, attn_weights = self.self_attn(
308
+ hidden_states=hidden_states,
309
+ attention_mask=attention_mask,
310
+ output_attentions=output_attentions,
311
+ )
312
+ hidden_states = residual + hidden_states
313
+
314
+ hidden_states = self.layer_norm1(hidden_states)
315
+
316
+ residual = hidden_states
317
+ hidden_states = self.mlp(hidden_states)
318
+ hidden_states = residual + hidden_states
319
+ hidden_states = self.layer_norm2(hidden_states)
320
+ outputs = (hidden_states,)
321
+
322
+ if output_attentions:
323
+ outputs += (attn_weights,)
324
+
325
+ return outputs
326
+
327
+
328
+ class BiomedCLIPTextProjection(nn.Module):
329
+ def __init__(self, config):
330
+ super().__init__()
331
+ self.config = config
332
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size, bias=False)
333
+ self.activation_fn = ACT2FN[config.hidden_act]
334
+ self.fc2 = nn.Linear(config.intermediate_size, config.projection_dim, bias=False)
335
+
336
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
337
+ hidden_states = self.fc1(hidden_states)
338
+ hidden_states = self.activation_fn(hidden_states)
339
+ hidden_states = self.fc2(hidden_states)
340
+ return hidden_states
341
+
342
+
343
+ class BiomedCLIPEncoder(nn.Module):
344
+ """
345
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
346
+ [`BiomedCLIPEncoderLayer`].
347
+
348
+ Args:
349
+ config: BiomedCLIPConfig
350
+ """
351
+ def __init__(self, config, norm='pre'):
352
+ super().__init__()
353
+ self.config = config
354
+ self.norm = norm
355
+ self.layers = nn.ModuleList([BiomedCLIPEncoderLayer(config, norm) for _ in range(config.num_hidden_layers)])
356
+ self.gradient_checkpointing = False
357
+
358
+ def forward(
359
+ self,
360
+ hidden_states: torch.Tensor,
361
+ attention_mask: Optional[torch.FloatTensor] = None,
362
+ head_mask: Optional[torch.FloatTensor] = None,
363
+ encoder_hidden_states: Optional[torch.FloatTensor] = None,
364
+ encoder_attention_mask: Optional[torch.FloatTensor] = None,
365
+ past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None,
366
+ use_cache: Optional[bool] = None,
367
+ output_attentions: Optional[bool] = False,
368
+ output_hidden_states: Optional[bool] = False,
369
+ return_dict: Optional[bool] = True,
370
+ ) :
371
+ all_hidden_states = () if output_hidden_states else None
372
+ all_self_attentions = () if output_attentions else None
373
+ all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None
374
+
375
+ if self.gradient_checkpointing and self.training:
376
+ if use_cache:
377
+ logger.warning_once(
378
+ "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
379
+ )
380
+ use_cache = False
381
+
382
+ next_decoder_cache = () if use_cache else None
383
+ for i, layer_module in enumerate(self.layers):
384
+ if output_hidden_states:
385
+ all_hidden_states = all_hidden_states + (hidden_states,)
386
+
387
+ layer_head_mask = head_mask[i] if head_mask is not None else None
388
+ past_key_value = past_key_values[i] if past_key_values is not None else None
389
+
390
+ if self.gradient_checkpointing and self.training:
391
+ layer_outputs = self._gradient_checkpointing_func(
392
+ layer_module.__call__,
393
+ hidden_states,
394
+ attention_mask,
395
+ output_attentions,
396
+ )
397
+ else:
398
+ layer_outputs = layer_module(
399
+ hidden_states,
400
+ attention_mask,
401
+ output_attentions,
402
+ )
403
+
404
+ hidden_states = layer_outputs[0]
405
+ if use_cache:
406
+ next_decoder_cache += (layer_outputs[-1],)
407
+ if output_attentions:
408
+ all_self_attentions = all_self_attentions + (layer_outputs[1],)
409
+ if self.config.add_cross_attention:
410
+ all_cross_attentions = all_cross_attentions + (layer_outputs[2],)
411
+
412
+ if output_hidden_states:
413
+ all_hidden_states = all_hidden_states + (hidden_states,)
414
+
415
+ if not return_dict:
416
+ return tuple(
417
+ v
418
+ for v in [
419
+ hidden_states,
420
+ next_decoder_cache,
421
+ all_hidden_states,
422
+ all_self_attentions,
423
+ all_cross_attentions,
424
+ ]
425
+ if v is not None
426
+ )
427
+ return BaseModelOutputWithPastAndCrossAttentions(
428
+ last_hidden_state=hidden_states,
429
+ past_key_values=next_decoder_cache,
430
+ hidden_states=all_hidden_states,
431
+ attentions=all_self_attentions,
432
+ cross_attentions=all_cross_attentions,
433
+ )
434
+
435
+
436
+
437
+ class BiomedCLIPTextTransformer(CLIPPreTrainedModel):
438
+ def __init__(self, config: CLIPTextConfig):
439
+ super().__init__(config)
440
+ self.config = config
441
+ embed_dim = config.hidden_size
442
+ self.embeddings = BiomedCLIPTextEmbeddings(config)
443
+ self.encoder = BiomedCLIPEncoder(config, norm='post')
444
+ # no final_ln
445
+ # self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
446
+
447
+ # For `pooled_output` computation
448
+
449
+ def forward(
450
+ self,
451
+ input_ids: Optional[torch.Tensor] = None,
452
+ attention_mask: Optional[torch.Tensor] = None,
453
+ token_type_ids: Optional[torch.Tensor] = None,
454
+ position_ids: Optional[torch.Tensor] = None,
455
+ inputs_embeds: Optional[torch.Tensor] = None,
456
+ encoder_hidden_states: Optional[torch.Tensor] = None,
457
+ encoder_attention_mask: Optional[torch.Tensor] = None,
458
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
459
+ use_cache: Optional[bool] = None,
460
+ output_attentions: Optional[bool] = None,
461
+ output_hidden_states: Optional[bool] = None,
462
+ return_dict: Optional[bool] = None,
463
+ ) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]:
464
+ r"""
465
+ encoder_hidden_states (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
466
+ Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention if
467
+ the model is configured as a decoder.
468
+ encoder_attention_mask (`torch.FloatTensor` of shape `(batch_size, sequence_length)`, *optional*):
469
+ Mask to avoid performing attention on the padding token indices of the encoder input. This mask is used in
470
+ the cross-attention if the model is configured as a decoder. Mask values selected in `[0, 1]`:
471
+
472
+ - 1 for tokens that are **not masked**,
473
+ - 0 for tokens that are **masked**.
474
+ past_key_values (`tuple(tuple(torch.FloatTensor))` of length `config.n_layers` with each tuple having 4 tensors of shape `(batch_size, num_heads, sequence_length - 1, embed_size_per_head)`):
475
+ Contains precomputed key and value hidden states of the attention blocks. Can be used to speed up decoding.
476
+
477
+ If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
478
+ don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
479
+ `decoder_input_ids` of shape `(batch_size, sequence_length)`.
480
+ use_cache (`bool`, *optional*):
481
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
482
+ `past_key_values`).
483
+ """
484
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
485
+ output_hidden_states = (
486
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
487
+ )
488
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
489
+
490
+ if self.config.is_decoder:
491
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
492
+ else:
493
+ use_cache = False
494
+
495
+ if input_ids is not None and inputs_embeds is not None:
496
+ raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
497
+ elif input_ids is not None:
498
+ input_shape = input_ids.size()
499
+ elif inputs_embeds is not None:
500
+ input_shape = inputs_embeds.size()[:-1]
501
+ else:
502
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
503
+
504
+ batch_size, seq_length = input_shape
505
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
506
+
507
+ # past_key_values_length
508
+ past_key_values_length = past_key_values[0][0].shape[2] if past_key_values is not None else 0
509
+
510
+ if token_type_ids is None:
511
+ if hasattr(self.embeddings, "token_type_ids"):
512
+ buffered_token_type_ids = self.embeddings.token_type_ids[:, :seq_length]
513
+ buffered_token_type_ids_expanded = buffered_token_type_ids.expand(batch_size, seq_length)
514
+ token_type_ids = buffered_token_type_ids_expanded
515
+ else:
516
+ token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
517
+
518
+ embedding_output = self.embeddings(
519
+ input_ids=input_ids,
520
+ position_ids=position_ids,
521
+ token_type_ids=token_type_ids,
522
+ inputs_embeds=inputs_embeds,
523
+ past_key_values_length=past_key_values_length,
524
+ )
525
+
526
+ if attention_mask is None:
527
+ attention_mask = torch.ones((batch_size, seq_length + past_key_values_length), device=device)
528
+
529
+ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
530
+ # ourselves in which case we just need to make it broadcastable to all heads.
531
+ extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape)
532
+
533
+ # If a 2D or 3D attention mask is provided for the cross-attention
534
+ # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length]
535
+ if self.config.is_decoder and encoder_hidden_states is not None:
536
+ encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
537
+ encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
538
+ if encoder_attention_mask is None:
539
+ encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
540
+
541
+ if use_sdpa_attention_masks:
542
+ # Expand the attention mask for SDPA.
543
+ # [bsz, seq_len] -> [bsz, 1, seq_len, seq_len]
544
+ encoder_extended_attention_mask = _prepare_4d_attention_mask_for_sdpa(
545
+ encoder_attention_mask, embedding_output.dtype, tgt_len=seq_length
546
+ )
547
+ else:
548
+ encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
549
+ else:
550
+ encoder_extended_attention_mask = None
551
+
552
+
553
+ encoder_outputs = self.encoder(
554
+ embedding_output,
555
+ attention_mask=extended_attention_mask,
556
+ output_attentions=output_attentions,
557
+ output_hidden_states=output_hidden_states,
558
+ return_dict=return_dict,
559
+ )
560
+ sequence_output = encoder_outputs[0]
561
+
562
+ return (sequence_output, sequence_output[:, 0, :])
563
+
564
+
565
+
566
+ class BiomedCLIPVisionTransformer(nn.Module):
567
+ def __init__(self, config: CLIPVisionConfig):
568
+ super().__init__()
569
+ self.config = config
570
+ embed_dim = config.hidden_size
571
+
572
+ self.embeddings = BiomedCLIPVisionEmbeddings(config)
573
+ # No pre_norm in open_clip Vision Tower
574
+ # self.pre_layrnorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
575
+ self.encoder = BiomedCLIPEncoder(config)
576
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
577
+
578
+ def forward(
579
+ self,
580
+ pixel_values: Optional[torch.FloatTensor] = None,
581
+ output_attentions: Optional[bool] = None,
582
+ output_hidden_states: Optional[bool] = None,
583
+ return_dict: Optional[bool] = None,
584
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
585
+ r"""
586
+ Returns:
587
+
588
+ """
589
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
590
+ output_hidden_states = (
591
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
592
+ )
593
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
594
+
595
+ if pixel_values is None:
596
+ raise ValueError("You have to specify pixel_values")
597
+
598
+ hidden_states = self.embeddings(pixel_values)
599
+ # hidden_states = self.pre_layrnorm(hidden_states)
600
+
601
+ encoder_outputs = self.encoder(
602
+ hidden_states=hidden_states,
603
+ output_attentions=output_attentions,
604
+ output_hidden_states=output_hidden_states,
605
+ return_dict=return_dict,
606
+ )
607
+
608
+ last_hidden_state = encoder_outputs[0]
609
+ pooled_output = last_hidden_state[:, 0, :]
610
+ pooled_output = self.post_layernorm(pooled_output)
611
+
612
+ if not return_dict:
613
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
614
+
615
+ return BaseModelOutputWithPooling(
616
+ last_hidden_state=last_hidden_state,
617
+ pooler_output=pooled_output,
618
+ hidden_states=encoder_outputs.hidden_states,
619
+ attentions=encoder_outputs.attentions,
620
+ )
621
+
622
+
623
+ class BiomedCLIPModel(CLIPPreTrainedModel):
624
+ config_class = BiomedCLIPConfig
625
+ _no_split_modules = ["BiomedCLIPTextEmbeddings", "BiomedCLIPEncoderLayer"]
626
+
627
+ def __init__(self, config: BiomedCLIPConfig):
628
+ super().__init__(config)
629
+
630
+ if not isinstance(config.text_config, CLIPTextConfig):
631
+ raise ValueError(
632
+ "config.text_config is expected to be of type CLIPTextConfig but is of type"
633
+ f" {type(config.text_config)}."
634
+ )
635
+
636
+ if not isinstance(config.vision_config, CLIPVisionConfig):
637
+ raise ValueError(
638
+ "config.vision_config is expected to be of type CLIPVisionConfig but is of type"
639
+ f" {type(config.vision_config)}."
640
+ )
641
+
642
+ text_config = config.text_config
643
+ text_projection_config = config.text_projection_config
644
+ vision_config = config.vision_config
645
+
646
+
647
+ self.projection_dim = config.projection_dim
648
+ self.text_embed_dim = text_config.hidden_size
649
+ self.vision_embed_dim = vision_config.hidden_size
650
+
651
+ self.text_model = BiomedCLIPTextTransformer(text_config)
652
+ self.vision_model = BiomedCLIPVisionTransformer(vision_config)
653
+
654
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
655
+
656
+ self.text_projection = BiomedCLIPTextProjection(text_projection_config)
657
+
658
+ self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
659
+
660
+ # Initialize weights and apply final processing
661
+ self.post_init()
662
+
663
+ def get_text_features(
664
+ self,
665
+ input_ids: Optional[torch.Tensor] = None,
666
+ attention_mask: Optional[torch.Tensor] = None,
667
+ token_type_ids: Optional[torch.Tensor] = None,
668
+ position_ids: Optional[torch.Tensor] = None,
669
+ output_attentions: Optional[bool] = None,
670
+ output_hidden_states: Optional[bool] = None,
671
+ return_dict: Optional[bool] = None,
672
+ ) -> torch.FloatTensor:
673
+ r"""
674
+ Returns:
675
+ text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
676
+ applying the projection layer to the pooled output of [`CLIPTextModel`].
677
+
678
+ Examples:
679
+
680
+ ```python
681
+ >>> from transformers import AutoTokenizer, CLIPModel
682
+
683
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
684
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
685
+
686
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
687
+ >>> text_features = model.get_text_features(**inputs)
688
+ ```"""
689
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
690
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
691
+ output_hidden_states = (
692
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
693
+ )
694
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
695
+
696
+ text_outputs = self.text_model(
697
+ input_ids=input_ids,
698
+ attention_mask=attention_mask,
699
+ token_type_ids=token_type_ids,
700
+ position_ids=position_ids,
701
+ output_attentions=output_attentions,
702
+ output_hidden_states=output_hidden_states,
703
+ return_dict=return_dict,
704
+ )
705
+
706
+ pooled_output = text_outputs[1]
707
+ text_features = self.text_projection(pooled_output)
708
+
709
+ return text_features
710
+
711
+ def get_image_features(
712
+ self,
713
+ pixel_values: Optional[torch.FloatTensor] = None,
714
+ output_attentions: Optional[bool] = None,
715
+ output_hidden_states: Optional[bool] = None,
716
+ return_dict: Optional[bool] = None,
717
+ ) -> torch.FloatTensor:
718
+ r"""
719
+ Returns:
720
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
721
+ applying the projection layer to the pooled output of [`CLIPVisionModel`].
722
+
723
+ Examples:
724
+
725
+ ```python
726
+ >>> from PIL import Image
727
+ >>> import requests
728
+ >>> from transformers import AutoProcessor, CLIPModel
729
+
730
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
731
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
732
+
733
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
734
+ >>> image = Image.open(requests.get(url, stream=True).raw)
735
+
736
+ >>> inputs = processor(images=image, return_tensors="pt")
737
+
738
+ >>> image_features = model.get_image_features(**inputs)
739
+ ```"""
740
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
741
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
742
+ output_hidden_states = (
743
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
744
+ )
745
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
746
+
747
+ vision_outputs = self.vision_model(
748
+ pixel_values=pixel_values,
749
+ output_attentions=output_attentions,
750
+ output_hidden_states=output_hidden_states,
751
+ return_dict=return_dict,
752
+ )
753
+
754
+ pooled_output = vision_outputs[1] # pooled_output
755
+ image_features = self.visual_projection(pooled_output)
756
+
757
+ return image_features
758
+
759
+ def forward(
760
+ self,
761
+ input_ids: Optional[torch.LongTensor] = None,
762
+ pixel_values: Optional[torch.FloatTensor] = None,
763
+ attention_mask: Optional[torch.Tensor] = None,
764
+ token_type_ids: Optional[torch.LongTensor] = None,
765
+ position_ids: Optional[torch.LongTensor] = None,
766
+ return_loss: Optional[bool] = None,
767
+ output_attentions: Optional[bool] = None,
768
+ output_hidden_states: Optional[bool] = None,
769
+ return_dict: Optional[bool] = None,
770
+ ) -> Union[Tuple, CLIPOutput]:
771
+ r"""
772
+ Returns:
773
+
774
+ Examples:
775
+
776
+ ```python
777
+ >>> from PIL import Image
778
+ >>> import requests
779
+ >>> from transformers import AutoProcessor, CLIPModel
780
+
781
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
782
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
783
+
784
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
785
+ >>> image = Image.open(requests.get(url, stream=True).raw)
786
+
787
+ >>> inputs = processor(
788
+ ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
789
+ ... )
790
+
791
+ >>> outputs = model(**inputs)
792
+ >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
793
+ >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
794
+ ```"""
795
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
796
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
797
+ output_hidden_states = (
798
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
799
+ )
800
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
801
+
802
+ vision_outputs = self.vision_model(
803
+ pixel_values=pixel_values,
804
+ output_attentions=output_attentions,
805
+ output_hidden_states=output_hidden_states,
806
+ return_dict=return_dict,
807
+ )
808
+
809
+ text_outputs = self.text_model(
810
+ input_ids=input_ids,
811
+ token_type_ids=token_type_ids,
812
+ attention_mask=attention_mask,
813
+ position_ids=position_ids,
814
+ output_attentions=output_attentions,
815
+ output_hidden_states=output_hidden_states,
816
+ return_dict=return_dict,
817
+ )
818
+
819
+ image_embeds = vision_outputs[1]
820
+ image_embeds = self.visual_projection(image_embeds)
821
+
822
+ text_embeds = text_outputs[1]
823
+ text_embeds = self.text_projection(text_embeds)
824
+
825
+ # normalized features
826
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
827
+ text_embeds = text_embeds / text_embeds.norm(p=2, dim=-1, keepdim=True)
828
+
829
+ # cosine similarity as logits
830
+ logit_scale = self.logit_scale.exp()
831
+ logits_per_text = torch.matmul(text_embeds, image_embeds.t()) * logit_scale
832
+ logits_per_image = logits_per_text.t()
833
+
834
+ loss = None
835
+ if return_loss:
836
+ loss = clip_loss(logits_per_text)
837
+
838
+ if not return_dict:
839
+ output = (logits_per_image, logits_per_text, text_embeds, image_embeds, text_outputs, vision_outputs)
840
+ return ((loss,) + output) if loss is not None else output
841
+
842
+ return CLIPOutput(
843
+ loss=loss,
844
+ logits_per_image=logits_per_image,
845
+ logits_per_text=logits_per_text,
846
+ text_embeds=text_embeds,
847
+ image_embeds=image_embeds,
848
+ text_model_output=text_outputs,
849
+ vision_model_output=vision_outputs,
850
+ )
851
+
852
+
853
+ class BiomedCLIPForImageClassification(CLIPPreTrainedModel):
854
+ main_input_name = "pixel_values"
855
+
856
+ def __init__(self, config: BiomedCLIPConfig) -> None:
857
+ super().__init__(config)
858
+
859
+ self.num_labels = config.num_labels
860
+ self.vision_model = BiomedCLIPVisionTransformer(config.vision_config)
861
+
862
+ # Classifier head
863
+ self.classifier = (
864
+ nn.Linear(config.vision_config.hidden_size, config.num_labels) if config.num_labels > 0 else nn.Identity()
865
+ )
866
+
867
+ # Initialize weights and apply final processing
868
+ self.post_init()
869
+
870
+ def forward(
871
+ self,
872
+ pixel_values: Optional[torch.Tensor] = None,
873
+ labels: Optional[torch.Tensor] = None,
874
+ output_attentions: Optional[bool] = None,
875
+ output_hidden_states: Optional[bool] = None,
876
+ return_dict: Optional[bool] = None,
877
+ ) -> Union[tuple, ImageClassifierOutput]:
878
+ r"""
879
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
880
+ Labels for computing the image classification/regression loss. Indices should be in `[0, ...,
881
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
882
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
883
+ """
884
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
885
+ output_hidden_states = (
886
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
887
+ )
888
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
889
+
890
+ outputs = self.vision_model(
891
+ pixel_values,
892
+ output_attentions=output_attentions,
893
+ output_hidden_states=output_hidden_states,
894
+ return_dict=return_dict,
895
+ )
896
+
897
+ sequence_output = outputs[0]
898
+
899
+ # average pool the patch tokens
900
+ sequence_output = torch.mean(sequence_output[:, 1:, :], dim=1)
901
+ # apply classifier
902
+ logits = self.classifier(sequence_output)
903
+
904
+ loss = None
905
+ if labels is not None:
906
+ # move labels to correct device to enable model parallelism
907
+ labels = labels.to(logits.device)
908
+ if self.config.problem_type is None:
909
+ if self.num_labels == 1:
910
+ self.config.problem_type = "regression"
911
+ elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
912
+ self.config.problem_type = "single_label_classification"
913
+ else:
914
+ self.config.problem_type = "multi_label_classification"
915
+
916
+ if self.config.problem_type == "regression":
917
+ loss_fct = MSELoss()
918
+ if self.num_labels == 1:
919
+ loss = loss_fct(logits.squeeze(), labels.squeeze())
920
+ else:
921
+ loss = loss_fct(logits, labels)
922
+ elif self.config.problem_type == "single_label_classification":
923
+ loss_fct = CrossEntropyLoss()
924
+ loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
925
+ elif self.config.problem_type == "multi_label_classification":
926
+ loss_fct = BCEWithLogitsLoss()
927
+ loss = loss_fct(logits, labels)
928
+
929
+ if not return_dict:
930
+ output = (logits,) + outputs[2:]
931
+ return ((loss,) + output) if loss is not None else output
932
+
933
+ return ImageClassifierOutput(
934
+ loss=loss,
935
+ logits=logits,
936
+ hidden_states=outputs.hidden_states,
937
+ attentions=outputs.attentions,
938
+ )
preprocessor_config.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": 224,
3
+ "do_center_crop": true,
4
+ "do_normalize": true,
5
+ "do_resize": true,
6
+ "image_processor_type": "CLIPImageProcessor",
7
+ "tokenizer_type": "BertTokenizer",
8
+ "image_mean": [
9
+ 0.48145466,
10
+ 0.4578275,
11
+ 0.40821073
12
+ ],
13
+ "image_std": [
14
+ 0.26862954,
15
+ 0.26130258,
16
+ 0.27577711
17
+ ],
18
+ "resample": 3,
19
+ "size": 224
20
+ }
processing_biomed_clip.py ADDED
@@ -0,0 +1,153 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Image/Text processor class for CLIP
17
+ """
18
+
19
+ import warnings
20
+
21
+ from transformers.processing_utils import ProcessorMixin
22
+ from transformers.tokenization_utils_base import BatchEncoding
23
+
24
+
25
+ class BiomedCLIPProcessor(ProcessorMixin):
26
+ r"""
27
+ Constructs a CLIP processor which wraps a CLIP image processor and a CLIP tokenizer into a single processor.
28
+
29
+ [`CLIPProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`CLIPTokenizerFast`]. See the
30
+ [`~CLIPProcessor.__call__`] and [`~CLIPProcessor.decode`] for more information.
31
+
32
+ Args:
33
+ image_processor ([`CLIPImageProcessor`], *optional*):
34
+ The image processor is a required input.
35
+ tokenizer ([`CLIPTokenizerFast`], *optional*):
36
+ The tokenizer is a required input.
37
+ """
38
+
39
+ attributes = ["image_processor", "tokenizer"]
40
+ image_processor_class = "CLIPImageProcessor"
41
+ tokenizer_class = ("BertTokenizer", "BertTokenizerFast")
42
+
43
+ def __init__(self, image_processor=None, tokenizer=None, **kwargs):
44
+ feature_extractor = None
45
+ if "feature_extractor" in kwargs:
46
+ warnings.warn(
47
+ "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`"
48
+ " instead.",
49
+ FutureWarning,
50
+ )
51
+ feature_extractor = kwargs.pop("feature_extractor")
52
+
53
+ image_processor = image_processor if image_processor is not None else feature_extractor
54
+ if image_processor is None:
55
+ raise ValueError("You need to specify an `image_processor`.")
56
+ if tokenizer is None:
57
+ raise ValueError("You need to specify a `tokenizer`.")
58
+
59
+ super().__init__(image_processor, tokenizer)
60
+
61
+ def __call__(self, text=None, images=None, return_tensors=None, **kwargs):
62
+ """
63
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
64
+ and `kwargs` arguments to CLIPTokenizerFast's [`~CLIPTokenizerFast.__call__`] if `text` is not `None` to encode
65
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
66
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
67
+ of the above two methods for more information.
68
+
69
+ Args:
70
+ text (`str`, `List[str]`, `List[List[str]]`):
71
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
72
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
73
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
74
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
75
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
76
+ tensor. Both channels-first and channels-last formats are supported.
77
+
78
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
79
+ If set, will return tensors of a particular framework. Acceptable values are:
80
+
81
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
82
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
83
+ - `'np'`: Return NumPy `np.ndarray` objects.
84
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
85
+
86
+ Returns:
87
+ [`BatchEncoding`]: A [`BatchEncoding`] with the following fields:
88
+
89
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`.
90
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
91
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
92
+ `None`).
93
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
94
+ """
95
+ tokenizer_kwargs, image_processor_kwargs = {}, {}
96
+ if kwargs:
97
+ tokenizer_kwargs = {k: v for k, v in kwargs.items() if k not in self.image_processor._valid_processor_keys}
98
+ image_processor_kwargs = {
99
+ k: v for k, v in kwargs.items() if k in self.image_processor._valid_processor_keys
100
+ }
101
+
102
+ if text is None and images is None:
103
+ raise ValueError("You have to specify either text or images. Both cannot be none.")
104
+
105
+ if text is not None:
106
+ encoding = self.tokenizer(text, return_tensors=return_tensors, **tokenizer_kwargs)
107
+
108
+ if images is not None:
109
+ image_features = self.image_processor(images, return_tensors=return_tensors, **image_processor_kwargs)
110
+
111
+ if text is not None and images is not None:
112
+ encoding["pixel_values"] = image_features.pixel_values
113
+ return encoding
114
+ elif text is not None:
115
+ return encoding
116
+ else:
117
+ return BatchEncoding(data=dict(**image_features), tensor_type=return_tensors)
118
+
119
+ def batch_decode(self, *args, **kwargs):
120
+ """
121
+ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
122
+ refer to the docstring of this method for more information.
123
+ """
124
+ return self.tokenizer.batch_decode(*args, **kwargs)
125
+
126
+ def decode(self, *args, **kwargs):
127
+ """
128
+ This method forwards all its arguments to CLIPTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
129
+ the docstring of this method for more information.
130
+ """
131
+ return self.tokenizer.decode(*args, **kwargs)
132
+
133
+ @property
134
+ def model_input_names(self):
135
+ tokenizer_input_names = self.tokenizer.model_input_names
136
+ image_processor_input_names = self.image_processor.model_input_names
137
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
138
+
139
+ @property
140
+ def feature_extractor_class(self):
141
+ warnings.warn(
142
+ "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.",
143
+ FutureWarning,
144
+ )
145
+ return self.image_processor_class
146
+
147
+ @property
148
+ def feature_extractor(self):
149
+ warnings.warn(
150
+ "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.",
151
+ FutureWarning,
152
+ )
153
+ return self.image_processor
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5bdc400de59a85620ddc7584d06913dc901c47f22647899c6addec71b9a5c9a2
3
+ size 783733062