|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn.functional as F |
|
from torch import nn |
|
from torch import Tensor as T |
|
from transformers import BertForMaskedLM |
|
from transformers.modeling_outputs import ModelOutput |
|
|
|
from .configuration_cxrbert import CXRBertConfig |
|
|
|
from dataclasses import dataclass |
|
|
|
BERTTupleOutput = Tuple[T, T, T, T, T] |
|
|
|
@dataclass |
|
class CXRBertOutput(ModelOutput): |
|
last_hidden_state: torch.FloatTensor = None |
|
logits: torch.FloatTensor = None |
|
cls_projected_embedding: Optional[torch.FloatTensor] = None |
|
hidden_states: Optional[Tuple[torch.FloatTensor]] = None |
|
attentions: Optional[Tuple[torch.FloatTensor]] = None |
|
|
|
|
|
class BertProjectionHead(nn.Module): |
|
''' |
|
Projection head to be used with BERT CLS token, it's similar to `BertPredictionHeadTransform` in HuggingFace library. |
|
:param config: CXRBertConfig |
|
:return: (batch_size, output_size) |
|
''' |
|
def __init__(self, config: CXRBertConfig) -> None: |
|
super().__init__() |
|
self.dense_to_hidden = nn.Linear(config.hidden_size, config.projection_size) |
|
self.transform_act_fn = nn.functional.gelu |
|
self.LayerNorm = nn.LayerNorm(config.projection_size, eps=1e-12) |
|
self.dense_to_output = nn.Linear(config.projection_size, config.projection_size) |
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
hidden_states = self.dense_to_hidden(hidden_states) |
|
hidden_states = self.transform_act_fn(hidden_states) |
|
hidden_states = self.LayerNorm(hidden_states) |
|
hidden_states = self.dense_to_output(hidden_states) |
|
|
|
return hidden_states |
|
|
|
|
|
class CXRBertModel(BertForMaskedLM): |
|
""" |
|
Implements the CXR-BERT model outlined in the manuscript: |
|
Boecking et al. "Making the Most of Text Semantics to Improve Biomedical Vision-Language Processing", 2022 |
|
https://arxiv.org/abs/2204.09817 |
|
|
|
Extends the HuggingFace BertForMaskedLM model by adding a separate projection head. The projection "[CLS]" token is used to align |
|
the latent vectors of image and text modalities. |
|
""" |
|
|
|
config_class = CXRBertConfig |
|
|
|
def __init__(self, config: CXRBertConfig): |
|
super().__init__(config) |
|
|
|
self.cls_projection_head = BertProjectionHead(config) |
|
self.init_weights() |
|
|
|
def forward( |
|
self, |
|
input_ids: torch.Tensor, |
|
attention_mask: torch.Tensor, |
|
token_type_ids: Optional[torch.Tensor] = None, |
|
position_ids: Optional[torch.Tensor] = None, |
|
head_mask: Optional[torch.Tensor] = None, |
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
output_attentions: Optional[bool] = None, |
|
output_hidden_states: Optional[bool] = None, |
|
output_cls_projected_embedding: Optional[bool] = None, |
|
return_dict: Optional[bool] = None, |
|
**kwargs: Any |
|
) -> Union[BERTTupleOutput, CXRBertOutput]: |
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
bert_for_masked_lm_output = super().forward(input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=True, |
|
return_dict=True) |
|
|
|
last_hidden_state = bert_for_masked_lm_output.hidden_states[-1] |
|
cls_projected_embedding = self.cls_projection_head(last_hidden_state[:, 0, :]) if output_cls_projected_embedding else None |
|
|
|
if return_dict: |
|
return CXRBertOutput( |
|
last_hidden_state=last_hidden_state, |
|
logits=bert_for_masked_lm_output.logits, |
|
cls_projected_embedding=cls_projected_embedding, |
|
hidden_states=bert_for_masked_lm_output.hidden_states if output_hidden_states else None, |
|
attentions=bert_for_masked_lm_output.attentions, |
|
) |
|
else: |
|
return ( |
|
last_hidden_state, |
|
bert_for_masked_lm_output.logits, |
|
cls_projected_embedding, |
|
bert_for_masked_lm_output.hidden_states, |
|
bert_for_masked_lm_output.attentions,) |
|
|
|
def get_projected_text_embeddings(self, input_ids: torch.Tensor, attention_mask: torch.Tensor) -> torch.Tensor: |
|
""" |
|
Returns l2-normalised projected cls token embeddings for the given input token ids and attention mask. |
|
The joint latent space is trained using a contrastive objective between image and text data modalities. |
|
|
|
:param input_ids: (batch_size, sequence_length) |
|
:param attention_mask: (batch_size, sequence_length) |
|
:return: (batch_size, projection_size) |
|
""" |
|
|
|
outputs = self.forward(input_ids=input_ids, attention_mask=attention_mask, |
|
output_cls_projected_embedding=True, return_dict=True) |
|
assert isinstance(outputs, CXRBertOutput) |
|
|
|
normalized_cls_embedding = F.normalize(outputs.cls_projected_embedding, dim=1) |
|
return normalized_cls_embedding |
|
|