Gengzigang commited on
Commit
3e16209
1 Parent(s): bd369f9
CLIP.png ADDED
README.md CHANGED
@@ -1,3 +1,55 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ <div align="center">
5
+
6
+ <h2><a href="https://arxiv.org/abs/*****">LLM2CLIP: Extending the Capability Boundaries of CLIP through Large Language Models</a></h2>
7
+ Weiquan Huang<sup>1*</sup>, Aoqi Wu<sup>1*</sup>, Yifan Yang<sup>2†</sup>, Xufang Luo<sup>2</sup>, Yuqing Yang<sup>2</sup>, Liang Hu<sup>1</sup>, Qi Dai<sup>2</sup>, Xiyang Dai<sup>2</sup>, Dongdong Chen<sup>2</sup>, Chong Luo<sup>2</sup>, Lili Qiu<sup>2</sup>
8
+
9
+ <sup>1</sup>Tongji Universiy, <sup>2</sup>Microsoft Corporation <br><sup>*</sup>Equal contribution <br><sup>†</sup> Corresponding to: [email protected]
10
+
11
+ <p><a rel="nofollow" href="">[📂 GitHub]</a> <a rel="nofollow" href="">[🆕 Blog]</a> <a rel="nofollow" href="https://arxiv.org/abs/2312.14238">[📜 LLM2CLIP]</a>
12
+ </div>
13
+
14
+
15
+ In this paper, we propose LLM2CLIP, a novel approach that embraces the power of LLMs to unlock CLIP’s potential. By fine-tuning the LLM in the caption space with contrastive learning, we extract its textual capabilities into the output embeddings, significantly improving the output layer’s textual discriminability. We then design an efficient training process where the fine-tuned LLM acts as a powerful teacher for CLIP’s visual encoder. Thanks to the LLM’s presence, we can now incorporate longer and more complex captions without being restricted by vanilla CLIP text encoder’s context window and ability limitations. Our experiments demonstrate that this approach brings substantial improvements in cross-modal tasks. Our method directly boosted the performance of the previously SOTA EVA02 model by 16.5% on both long-text and short-text retrieval tasks, transforming a CLIP model trained solely on English data into a state-of-the-art cross-lingual model. Moreover, when integrated into mul- timodal training with models like Llava 1.5, it consistently outperformed CLIP across nearly all benchmarks, demonstrating comprehensive performance improvements.
16
+
17
+ ## LLM2CLIP performance
18
+
19
+ <div align="center">
20
+ <img src="teaser.png" alt="summary_tab" width="75%">
21
+ </div>
22
+ **It's important to note that all results presented in the paper are evaluated using PyTorch weights. There may be differences in performance when using Hugging Face (hf) models.**
23
+
24
+ ## Model Details
25
+ - **Model Type:** vision foundation model, feature backbone
26
+ - **Pretrain Dataset:** CC3M, CC12M, YFCC15M and Recap-DataComp-1B(30M subset)
27
+
28
+
29
+ ## Usage
30
+
31
+ ### Huggingface Version
32
+ ```python
33
+ from PIL import Image
34
+ from transformers import AutoModel
35
+ from transformers import CLIPImageProcessor
36
+ import torch
37
+
38
+ image_path = "CLIP.png"
39
+ model_name_or_path = "LLM2CLIP-EVA02-L-14-336" # or /path/to/local/LLM2CLIP-EVA02-L-14-336
40
+ image_size = 336
41
+
42
+ processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
43
+ model = AutoModel.from_pretrained(
44
+ model_name_or_path,
45
+ torch_dtype=torch.float16,
46
+ trust_remote_code=True).to('cuda').eval()
47
+
48
+ image = Image.open(image_path)
49
+ input_pixels = processor(images=image, return_tensors="pt").pixel_values.to('cuda')
50
+
51
+ with torch.no_grad(), torch.cuda.amp.autocast():
52
+ outputs = model.get_image_features(input_pixels)
53
+ ```
54
+
55
+ ## BibTeX & Citation
configuration_evaclip.py ADDED
@@ -0,0 +1,421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ EvaCLIP model configuration"""
16
+ # Code mainly copied here: https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/configuration_clip.py
17
+ # and adjusted for evaclip
18
+
19
+ import copy
20
+ import os
21
+ from collections import OrderedDict
22
+ from typing import TYPE_CHECKING, Any, Mapping, Optional, Union
23
+
24
+
25
+ if TYPE_CHECKING:
26
+ from transformers.processing_utils import ProcessorMixin
27
+ from transformers.utils import TensorType
28
+
29
+ from transformers.configuration_utils import PretrainedConfig
30
+ from transformers.utils import logging
31
+
32
+
33
+ logger = logging.get_logger(__name__)
34
+
35
+
36
+ class EvaCLIPTextConfig(PretrainedConfig):
37
+ r"""
38
+ This is the configuration class to store the configuration of a [`CLIPTextModel`]. It is used to instantiate a CLIP
39
+ text encoder according to the specified arguments, defining the model architecture. Instantiating a configuration
40
+ with the defaults will yield a similar configuration to that of the text encoder of the CLIP
41
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
42
+
43
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
44
+ documentation from [`PretrainedConfig`] for more information.
45
+
46
+ Args:
47
+ vocab_size (`int`, *optional*, defaults to 49408):
48
+ Vocabulary size of the CLIP text model. Defines the number of different tokens that can be represented by
49
+ the `inputs_ids` passed when calling [`CLIPModel`].
50
+ hidden_size (`int`, *optional*, defaults to 512):
51
+ Dimensionality of the encoder layers and the pooler layer.
52
+ intermediate_size (`int`, *optional*, defaults to 2048):
53
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
54
+ num_hidden_layers (`int`, *optional*, defaults to 12):
55
+ Number of hidden layers in the Transformer encoder.
56
+ num_attention_heads (`int`, *optional*, defaults to 8):
57
+ Number of attention heads for each attention layer in the Transformer encoder.
58
+ max_position_embeddings (`int`, *optional*, defaults to 77):
59
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
60
+ just in case (e.g., 512 or 1024 or 2048).
61
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
62
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
63
+ `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported.
64
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
65
+ The epsilon used by the layer normalization layers.
66
+ attention_dropout (`float`, *optional*, defaults to 0.0):
67
+ The dropout ratio for the attention probabilities.
68
+ initializer_range (`float`, *optional*, defaults to 0.02):
69
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
70
+ initializer_factor (`float`, *optional*, defaults to 1):
71
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
72
+ testing).
73
+
74
+ Example:
75
+
76
+ ```python
77
+ >>> from transformers import CLIPTextConfig, CLIPTextModel
78
+
79
+ >>> # Initializing a CLIPTextConfig with openai/clip-vit-base-patch32 style configuration
80
+ >>> configuration = CLIPTextConfig()
81
+
82
+ >>> # Initializing a CLIPTextModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
83
+ >>> model = CLIPTextModel(configuration)
84
+
85
+ >>> # Accessing the model configuration
86
+ >>> configuration = model.config
87
+ ```"""
88
+ model_type = "clip_text_model"
89
+
90
+ def __init__(
91
+ self,
92
+ vocab_size=49408,
93
+ hidden_size=512,
94
+ intermediate_size=2048,
95
+ projection_dim=512,
96
+ num_hidden_layers=12,
97
+ num_attention_heads=8,
98
+ max_position_embeddings=77,
99
+ hidden_act="gelu",
100
+ layer_norm_eps=1e-5,
101
+ attention_dropout=0.0,
102
+ initializer_range=0.02,
103
+ initializer_factor=1.0,
104
+ q_bias=True,
105
+ k_bias=True,
106
+ v_bias=True,
107
+ post_layernorm=False,
108
+ pad_token_id=1,
109
+ bos_token_id=0,
110
+ eos_token_id=2,
111
+ **kwargs,
112
+ ):
113
+ super().__init__(pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs)
114
+
115
+ self.vocab_size = vocab_size
116
+ self.hidden_size = hidden_size
117
+ self.intermediate_size = intermediate_size
118
+ self.projection_dim = projection_dim
119
+ self.num_hidden_layers = num_hidden_layers
120
+ self.num_attention_heads = num_attention_heads
121
+ self.max_position_embeddings = max_position_embeddings
122
+ self.layer_norm_eps = layer_norm_eps
123
+ self.hidden_act = hidden_act
124
+ self.initializer_range = initializer_range
125
+ self.initializer_factor = initializer_factor
126
+ self.q_bias=q_bias
127
+ self.k_bias=k_bias
128
+ self.v_bias=v_bias
129
+ self.post_layernorm = post_layernorm
130
+ self.attention_dropout = attention_dropout
131
+
132
+ @classmethod
133
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
134
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
135
+
136
+ # get the text config dict if we are loading from CLIPConfig
137
+ if config_dict.get("model_type") == "clip":
138
+ config_dict = config_dict["text_config"]
139
+
140
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
141
+ logger.warning(
142
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
143
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
144
+ )
145
+
146
+ return cls.from_dict(config_dict, **kwargs)
147
+
148
+
149
+ class EvaCLIPVisionConfig(PretrainedConfig):
150
+ r"""
151
+ This is the configuration class to store the configuration of a [`CLIPVisionModel`]. It is used to instantiate a
152
+ CLIP vision encoder according to the specified arguments, defining the model architecture. Instantiating a
153
+ configuration with the defaults will yield a similar configuration to that of the vision encoder of the CLIP
154
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
155
+
156
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
157
+ documentation from [`PretrainedConfig`] for more information.
158
+
159
+ Args:
160
+ hidden_size (`int`, *optional*, defaults to 768):
161
+ Dimensionality of the encoder layers and the pooler layer.
162
+ intermediate_size (`int`, *optional*, defaults to 3072):
163
+ Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder.
164
+ num_hidden_layers (`int`, *optional*, defaults to 12):
165
+ Number of hidden layers in the Transformer encoder.
166
+ num_attention_heads (`int`, *optional*, defaults to 12):
167
+ Number of attention heads for each attention layer in the Transformer encoder.
168
+ image_size (`int`, *optional*, defaults to 224):
169
+ The size (resolution) of each image.
170
+ patch_size (`int`, *optional*, defaults to 32):
171
+ The size (resolution) of each patch.
172
+ hidden_act (`str` or `function`, *optional*, defaults to `"quick_gelu"`):
173
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
174
+ `"relu"`, `"selu"` and `"gelu_new"` ``"quick_gelu"` are supported.
175
+ layer_norm_eps (`float`, *optional*, defaults to 1e-5):
176
+ The epsilon used by the layer normalization layers.
177
+ attention_dropout (`float`, *optional*, defaults to 0.0):
178
+ The dropout ratio for the attention probabilities.
179
+ initializer_range (`float`, *optional*, defaults to 0.02):
180
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
181
+ initializer_factor (`float`, *optional*, defaults to 1):
182
+ A factor for initializing all weight matrices (should be kept to 1, used internally for initialization
183
+ testing).
184
+
185
+ Example:
186
+
187
+ ```python
188
+ >>> from transformers import CLIPVisionConfig, CLIPVisionModel
189
+
190
+ >>> # Initializing a CLIPVisionConfig with openai/clip-vit-base-patch32 style configuration
191
+ >>> configuration = CLIPVisionConfig()
192
+
193
+ >>> # Initializing a CLIPVisionModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
194
+ >>> model = CLIPVisionModel(configuration)
195
+
196
+ >>> # Accessing the model configuration
197
+ >>> configuration = model.config
198
+ ```"""
199
+
200
+ model_type = "clip_vision_model"
201
+
202
+ def __init__(
203
+ self,
204
+ hidden_size=768,
205
+ intermediate_size=3072,
206
+ projection_dim=512,
207
+ num_hidden_layers=12,
208
+ num_attention_heads=12,
209
+ num_channels=3,
210
+ image_size=224,
211
+ patch_size=32,
212
+ hidden_act="gelu",
213
+ layer_norm_eps=1e-5,
214
+ attention_dropout=0.0,
215
+ initializer_range=0.02,
216
+ initializer_factor=1.0,
217
+ q_bias=True,
218
+ k_bias=True,
219
+ v_bias=True,
220
+ post_layernorm=False,
221
+ **kwargs,
222
+ ):
223
+ super().__init__(**kwargs)
224
+
225
+ self.hidden_size = hidden_size
226
+ self.intermediate_size = intermediate_size
227
+ self.projection_dim = projection_dim
228
+ self.num_hidden_layers = num_hidden_layers
229
+ self.num_attention_heads = num_attention_heads
230
+ self.num_channels = num_channels
231
+ self.patch_size = patch_size
232
+ self.image_size = image_size
233
+ self.initializer_range = initializer_range
234
+ self.initializer_factor = initializer_factor
235
+ self.q_bias=q_bias
236
+ self.k_bias=k_bias
237
+ self.v_bias=v_bias
238
+ self.post_layernorm = post_layernorm
239
+ self.attention_dropout = attention_dropout
240
+ self.layer_norm_eps = layer_norm_eps
241
+ self.hidden_act = hidden_act
242
+
243
+ @classmethod
244
+ def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
245
+ config_dict, kwargs = cls.get_config_dict(pretrained_model_name_or_path, **kwargs)
246
+
247
+ # get the vision config dict if we are loading from CLIPConfig
248
+ if config_dict.get("model_type") == "clip":
249
+ config_dict = config_dict["vision_config"]
250
+
251
+ if "model_type" in config_dict and hasattr(cls, "model_type") and config_dict["model_type"] != cls.model_type:
252
+ logger.warning(
253
+ f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
254
+ f"{cls.model_type}. This is not supported for all configurations of models and can yield errors."
255
+ )
256
+
257
+ return cls.from_dict(config_dict, **kwargs)
258
+
259
+
260
+ class EvaCLIPConfig(PretrainedConfig):
261
+ r"""
262
+ [`CLIPConfig`] is the configuration class to store the configuration of a [`CLIPModel`]. It is used to instantiate
263
+ a CLIP model according to the specified arguments, defining the text model and vision model configs. Instantiating
264
+ a configuration with the defaults will yield a similar configuration to that of the CLIP
265
+ [openai/clip-vit-base-patch32](https://huggingface.co/openai/clip-vit-base-patch32) architecture.
266
+
267
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
268
+ documentation from [`PretrainedConfig`] for more information.
269
+
270
+ Args:
271
+ text_config (`dict`, *optional*):
272
+ Dictionary of configuration options used to initialize [`CLIPTextConfig`].
273
+ vision_config (`dict`, *optional*):
274
+ Dictionary of configuration options used to initialize [`CLIPVisionConfig`].
275
+ projection_dim (`int`, *optional*, defaults to 512):
276
+ Dimentionality of text and vision projection layers.
277
+ logit_scale_init_value (`float`, *optional*, defaults to 2.6592):
278
+ The inital value of the *logit_scale* paramter. Default is used as per the original CLIP implementation.
279
+ kwargs (*optional*):
280
+ Dictionary of keyword arguments.
281
+
282
+ Example:
283
+
284
+ ```python
285
+ >>> from transformers import CLIPConfig, CLIPModel
286
+
287
+ >>> # Initializing a CLIPConfig with openai/clip-vit-base-patch32 style configuration
288
+ >>> configuration = CLIPConfig()
289
+
290
+ >>> # Initializing a CLIPModel (with random weights) from the openai/clip-vit-base-patch32 style configuration
291
+ >>> model = CLIPModel(configuration)
292
+
293
+ >>> # Accessing the model configuration
294
+ >>> configuration = model.config
295
+
296
+ >>> # We can also initialize a CLIPConfig from a CLIPTextConfig and a CLIPVisionConfig
297
+ >>> from transformers import CLIPTextConfig, CLIPVisionConfig
298
+
299
+ >>> # Initializing a CLIPText and CLIPVision configuration
300
+ >>> config_text = CLIPTextConfig()
301
+ >>> config_vision = CLIPVisionConfig()
302
+
303
+ >>> config = CLIPConfig.from_text_vision_configs(config_text, config_vision)
304
+ ```"""
305
+
306
+ model_type = "clip"
307
+ is_composition = True
308
+
309
+ def __init__(
310
+ self, text_config=None, vision_config=None, projection_dim=512, logit_scale_init_value=2.6592, **kwargs
311
+ ):
312
+ # If `_config_dict` exist, we use them for the backward compatibility.
313
+ # We pop out these 2 attributes before calling `super().__init__` to avoid them being saved (which causes a lot
314
+ # of confusion!).
315
+ text_config_dict = kwargs.pop("text_config_dict", None)
316
+ vision_config_dict = kwargs.pop("vision_config_dict", None)
317
+
318
+ super().__init__(**kwargs)
319
+
320
+ # Instead of simply assigning `[text|vision]_config_dict` to `[text|vision]_config`, we use the values in
321
+ # `[text|vision]_config_dict` to update the values in `[text|vision]_config`. The values should be same in most
322
+ # cases, but we don't want to break anything regarding `_config_dict` that existed before commit `8827e1b2`.
323
+ if text_config_dict is not None:
324
+ if text_config is None:
325
+ text_config = {}
326
+
327
+ # This is the complete result when using `text_config_dict`.
328
+ _text_config_dict = EvaCLIPTextConfig(**text_config_dict).to_dict()
329
+
330
+ # Give a warning if the values exist in both `_text_config_dict` and `text_config` but being different.
331
+ for key, value in _text_config_dict.items():
332
+ if key in text_config and value != text_config[key] and key not in ["transformers_version"]:
333
+ # If specified in `text_config_dict`
334
+ if key in text_config_dict:
335
+ message = (
336
+ f"`{key}` is found in both `text_config_dict` and `text_config` but with different values. "
337
+ f'The value `text_config_dict["{key}"]` will be used instead.'
338
+ )
339
+ # If inferred from default argument values (just to be super careful)
340
+ else:
341
+ message = (
342
+ f"`text_config_dict` is provided which will be used to initialize `CLIPTextConfig`. The "
343
+ f'value `text_config["{key}"]` will be overriden.'
344
+ )
345
+ logger.warning(message)
346
+
347
+ # Update all values in `text_config` with the ones in `_text_config_dict`.
348
+ text_config.update(_text_config_dict)
349
+
350
+ if vision_config_dict is not None:
351
+ if vision_config is None:
352
+ vision_config = {}
353
+
354
+ # This is the complete result when using `vision_config_dict`.
355
+ _vision_config_dict = EvaCLIPVisionConfig(**vision_config_dict).to_dict()
356
+ # convert keys to string instead of integer
357
+ if "id2label" in _vision_config_dict:
358
+ _vision_config_dict["id2label"] = {
359
+ str(key): value for key, value in _vision_config_dict["id2label"].items()
360
+ }
361
+
362
+ # Give a warning if the values exist in both `_vision_config_dict` and `vision_config` but being different.
363
+ for key, value in _vision_config_dict.items():
364
+ if key in vision_config and value != vision_config[key] and key not in ["transformers_version"]:
365
+ # If specified in `vision_config_dict`
366
+ if key in vision_config_dict:
367
+ message = (
368
+ f"`{key}` is found in both `vision_config_dict` and `vision_config` but with different "
369
+ f'values. The value `vision_config_dict["{key}"]` will be used instead.'
370
+ )
371
+ # If inferred from default argument values (just to be super careful)
372
+ else:
373
+ message = (
374
+ f"`vision_config_dict` is provided which will be used to initialize `CLIPVisionConfig`. "
375
+ f'The value `vision_config["{key}"]` will be overriden.'
376
+ )
377
+ logger.warning(message)
378
+
379
+ # Update all values in `vision_config` with the ones in `_vision_config_dict`.
380
+ vision_config.update(_vision_config_dict)
381
+
382
+ if text_config is None:
383
+ text_config = {}
384
+ logger.info("`text_config` is `None`. Initializing the `CLIPTextConfig` with default values.")
385
+
386
+ if vision_config is None:
387
+ vision_config = {}
388
+ logger.info("`vision_config` is `None`. initializing the `CLIPVisionConfig` with default values.")
389
+
390
+ self.text_config = EvaCLIPTextConfig(**text_config)
391
+ self.vision_config = EvaCLIPVisionConfig(**vision_config)
392
+
393
+ self.projection_dim = projection_dim
394
+ self.logit_scale_init_value = logit_scale_init_value
395
+ self.initializer_factor = 1.0
396
+
397
+ @classmethod
398
+ def from_text_vision_configs(cls, text_config: EvaCLIPTextConfig, vision_config: EvaCLIPVisionConfig, **kwargs):
399
+ r"""
400
+ Instantiate a [`CLIPConfig`] (or a derived class) from clip text model configuration and clip vision model
401
+ configuration.
402
+
403
+ Returns:
404
+ [`CLIPConfig`]: An instance of a configuration object
405
+ """
406
+
407
+ return cls(text_config=text_config.to_dict(), vision_config=vision_config.to_dict(), **kwargs)
408
+
409
+ def to_dict(self):
410
+ """
411
+ Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
412
+
413
+ Returns:
414
+ `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
415
+ """
416
+ output = copy.deepcopy(self.__dict__)
417
+ output["text_config"] = self.text_config.to_dict()
418
+ output["vision_config"] = self.vision_config.to_dict()
419
+ output["model_type"] = self.__class__.model_type
420
+ return output
421
+
convert_evaclip_pytorch_to_hf.py ADDED
@@ -0,0 +1,193 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+
16
+ # Part of the code was taken from:
17
+ # https://github.com/huggingface/transformers/blob/main/src/transformers/models/clap/convert_clap_original_pytorch_to_hf.py
18
+
19
+ import argparse
20
+
21
+ import torch
22
+ from PIL import Image
23
+ from transformers import AutoModel, AutoConfig
24
+ from transformers import CLIPImageProcessor, pipeline, CLIPTokenizer
25
+ from configuration_evaclip import EvaCLIPConfig
26
+ from modeling_evaclip import EvaCLIPModel
27
+
28
+
29
+ KEYS_TO_MODIFY_MAPPING = {
30
+ "cls_token":"embeddings.class_embedding",
31
+ "pos_embed":"embeddings.position_embedding.weight",
32
+ "patch_embed.proj":"embeddings.patch_embedding",
33
+ ".positional_embedding":".embeddings.position_embedding.weight",
34
+ ".token_embedding":".embeddings.token_embedding",
35
+ # "text.text_projection":"text_projection.weight",
36
+ "mlp.c_fc":"mlp.fc1",
37
+ "mlp.c_proj":"mlp.fc2",
38
+ "mlp.w1":"mlp.fc1",
39
+ "mlp.w2":"mlp.fc2",
40
+ "mlp.w3":"mlp.fc3",
41
+ ".proj.":".out_proj.",
42
+ # "q_bias":"q_proj.bias",
43
+ # "v_bias":"v_proj.bias",
44
+ "out.":"out_proj.",
45
+ "norm1":"layer_norm1",
46
+ "norm2":"layer_norm2",
47
+ "ln_1":"layer_norm1",
48
+ "ln_2":"layer_norm2",
49
+ ".attn":".self_attn",
50
+ "norm.":"post_layernorm.",
51
+ "ln_final":"final_layer_norm",
52
+ "visual.blocks":"vision_model.encoder.layers",
53
+ # "text.transformer.resblocks":"text_model.encoder.layers",
54
+ "visual.head":"visual_projection",
55
+ "visual.":"vision_model.",
56
+ # "text.":"text_model.",
57
+
58
+ }
59
+
60
+ def rename_state_dict(state_dict):
61
+ model_state_dict = {}
62
+
63
+ for key, value in state_dict.items():
64
+ # check if any key needs to be modified
65
+ for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items():
66
+ if key_to_modify in key:
67
+ key = key.replace(key_to_modify, new_key)
68
+ if "text_projection" in key:
69
+ model_state_dict[key] = value.T
70
+ elif "attn.qkv" in key:
71
+ # split qkv into query key and value
72
+ mixed_qkv = value
73
+ qkv_dim = mixed_qkv.size(0) // 3
74
+
75
+ query_layer = mixed_qkv[:qkv_dim]
76
+ key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
77
+ value_layer = mixed_qkv[qkv_dim * 2 :]
78
+
79
+ model_state_dict[key.replace("qkv", "q_proj")] = query_layer
80
+ model_state_dict[key.replace("qkv", "k_proj")] = key_layer
81
+ model_state_dict[key.replace("qkv", "v_proj")] = value_layer
82
+
83
+ elif "attn.in_proj" in key:
84
+ # split qkv into query key and value
85
+ mixed_qkv = value
86
+ qkv_dim = mixed_qkv.size(0) // 3
87
+
88
+ query_layer = mixed_qkv[:qkv_dim]
89
+ key_layer = mixed_qkv[qkv_dim : qkv_dim * 2]
90
+ value_layer = mixed_qkv[qkv_dim * 2 :]
91
+
92
+ model_state_dict[key.replace("in_proj_", "q_proj.")] = query_layer
93
+ model_state_dict[key.replace("in_proj_", "k_proj.")] = key_layer
94
+ model_state_dict[key.replace("in_proj_", "v_proj.")] = value_layer
95
+
96
+ elif "class_embedding" in key:
97
+ model_state_dict[key] = value[0,0,:]
98
+ elif "vision_model.embeddings.position_embedding" in key:
99
+ model_state_dict[key] = value[0,:,:]
100
+
101
+ else:
102
+ model_state_dict[key] = value
103
+
104
+ return model_state_dict
105
+
106
+ # This requires having a clone of https://github.com/baaivision/EVA/tree/master/EVA-CLIP as well as the right conda env
107
+ # Part of the code is copied from https://github.com/baaivision/EVA/blob/master/EVA-CLIP/README.md "Usage" section
108
+ def getevaclip(checkpoint_path, input_pixels, captions):
109
+ from eva_clip import create_model_and_transforms, get_tokenizer
110
+ model_name = "EVA02-CLIP-bigE-14-plus"
111
+ model, _, _ = create_model_and_transforms(model_name, checkpoint_path, force_custom_clip=True)
112
+ tokenizer = get_tokenizer(model_name)
113
+ text = tokenizer(captions)
114
+
115
+ with torch.no_grad():
116
+ text_features = model.encode_text(text)
117
+ image_features = model.encode_image(input_pixels)
118
+ image_features_normed = image_features / image_features.norm(dim=-1, keepdim=True)
119
+ text_features_normed = text_features / text_features.norm(dim=-1, keepdim=True)
120
+
121
+ label_probs = (100.0 * image_features_normed @ text_features_normed.T).softmax(dim=-1)
122
+
123
+ return label_probs
124
+
125
+ def save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config):
126
+ hf_model.save_pretrained(pytorch_dump_folder_path, safe_serialization=False)
127
+ transformers_config.save_pretrained(pytorch_dump_folder_path)
128
+
129
+ def check_loaded_model(pytorch_dump_folder_path, processor, image):
130
+ # hf_config = AutoConfig.from_pretrained(pytorch_dump_folder_path, trust_remote_code=True)
131
+ # hf_model = AutoModel.from_pretrained(pytorch_dump_folder_path, config=hf_config, trust_remote_code=True)
132
+ hf_model = AutoModel.from_pretrained(pytorch_dump_folder_path, trust_remote_code=True)
133
+
134
+ processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
135
+ image_path = 'LLM2CLIP-EVA02-L-14-336/CLIP.png'
136
+ image = Image.open(image_path)
137
+ input_pixels = processor(images=image, return_tensors="pt").pixel_values
138
+ with torch.no_grad():
139
+ image_features = hf_model.get_image_features(input_pixels)
140
+ print(image_features.shape)
141
+
142
+
143
+ # detector = pipeline(model=hf_model, task="zero-shot-image-classification", tokenizer = tokenizer, image_processor=processor)
144
+ # detector_probs = detector(image, candidate_labels=captions)
145
+ # print(f"text_probs loaded hf_model using pipeline: {detector_probs}")
146
+
147
+ def convert_evaclip_checkpoint(checkpoint_path, pytorch_dump_folder_path, config_path, image_path, save=False):
148
+ processor = CLIPImageProcessor.from_pretrained("openai/clip-vit-large-patch14-336")
149
+ image = Image.open(image_path)
150
+ input_pixels = processor( images=image, return_tensors="pt", padding=True).pixel_values
151
+
152
+ # This requires having a clone of https://github.com/baaivision/EVA/tree/master/EVA-CLIP as well as the right conda env
153
+ # original_evaclip_probs = getevaclip(checkpoint_path, input_pixels, captions)
154
+ # print(f"original_evaclip label probs: {original_evaclip_probs}")
155
+
156
+ transformers_config = EvaCLIPConfig.from_pretrained(config_path)
157
+ hf_model = EvaCLIPModel(transformers_config)
158
+ pt_model_state_dict = torch.load(checkpoint_path)['module']
159
+ state_dict = rename_state_dict(pt_model_state_dict)
160
+
161
+ hf_model.load_state_dict(state_dict, strict=False)
162
+
163
+ with torch.no_grad():
164
+ image_features = hf_model.get_image_features(input_pixels)
165
+ # text_features = hf_model.get_text_features(input_ids)
166
+ image_features /= image_features.norm(dim=-1, keepdim=True)
167
+ # text_features /= text_features.norm(dim=-1, keepdim=True)
168
+
169
+ print(image_features.shape)
170
+ # label_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1)
171
+ # print(f"hf_model label probs: {label_probs}")
172
+
173
+ if save:
174
+ save_model_and_config(pytorch_dump_folder_path, hf_model, transformers_config)
175
+
176
+ check_loaded_model(pytorch_dump_folder_path, processor, image)
177
+
178
+ # hf_model.push_to_hub("ORGANIZATION_NAME/EVA02_CLIP_E_psz14_plus_s9B")
179
+
180
+
181
+
182
+
183
+ if __name__ == "__main__":
184
+ parser = argparse.ArgumentParser()
185
+ parser.add_argument("--pytorch_dump_folder_path", default="LLM2CLIP-EVA02-L-14-336" ,type=str, help="Path to the output PyTorch model.")
186
+ parser.add_argument("--checkpoint_path", default="model_states.pt", type=str, help="Path to checkpoint" )
187
+ parser.add_argument("--config_path", default='LLM2CLIP-EVA02-L-14-336', type=str, help="Path to hf config.json of model to convert")
188
+ parser.add_argument("--image_path", default='LLM2CLIP-EVA02-L-14-336/CLIP.png', type=str, help="Path to image")
189
+ parser.add_argument("--save", default=False, type=str, help="Path to image")
190
+
191
+ args = parser.parse_args()
192
+
193
+ convert_evaclip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.image_path, args.save)
modeling_evaclip.py ADDED
@@ -0,0 +1,1510 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2021 The OpenAI Team Authors and The HuggingFace Team. All rights reserved.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """ PyTorch EvaCLIP model."""
16
+ # Code mainly taken from https://github.com/huggingface/transformers/blob/main/src/transformers/models/clip/modeling_clip.py#L943
17
+ # and adjusteed for EvaClip
18
+
19
+
20
+ from dataclasses import dataclass
21
+ from typing import Any, Optional, Tuple, Union
22
+
23
+ import torch
24
+ import torch.utils.checkpoint
25
+ from torch import nn
26
+ from einops import rearrange, repeat
27
+
28
+ from transformers.activations import ACT2FN
29
+ from transformers.modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
30
+ from transformers.modeling_utils import PreTrainedModel
31
+ from transformers.utils import (
32
+ ModelOutput,
33
+ add_start_docstrings,
34
+ add_start_docstrings_to_model_forward,
35
+ logging,
36
+ replace_return_docstrings,
37
+ )
38
+ from .configuration_evaclip import EvaCLIPConfig, EvaCLIPTextConfig, EvaCLIPVisionConfig
39
+
40
+ logger = logging.get_logger(__name__)
41
+
42
+ _CHECKPOINT_FOR_DOC = "QuanSun/EVA02_CLIP_E_psz14_plus_s9B"
43
+
44
+ Eva_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST = [
45
+ "EVA02_CLIP_E_psz14_plus_s9B",
46
+ ]
47
+
48
+ # Copied from transformers.models.bart.modeling_bart._expand_mask
49
+ def _expand_mask(mask: torch.Tensor, dtype: torch.dtype, tgt_len: Optional[int] = None):
50
+ """
51
+ Expands attention_mask from `[bsz, seq_len]` to `[bsz, 1, tgt_seq_len, src_seq_len]`.
52
+ """
53
+ bsz, src_len = mask.size()
54
+ tgt_len = tgt_len if tgt_len is not None else src_len
55
+
56
+ expanded_mask = mask[:, None, None, :].expand(bsz, 1, tgt_len, src_len).to(dtype)
57
+
58
+ inverted_mask = 1.0 - expanded_mask
59
+
60
+ return inverted_mask.masked_fill(inverted_mask.to(torch.bool), torch.finfo(dtype).min)
61
+
62
+
63
+ def broadcat(tensors, dim = -1):
64
+ num_tensors = len(tensors)
65
+ shape_lens = set(list(map(lambda t: len(t.shape), tensors)))
66
+ assert len(shape_lens) == 1, 'tensors must all have the same number of dimensions'
67
+ shape_len = list(shape_lens)[0]
68
+ dim = (dim + shape_len) if dim < 0 else dim
69
+ dims = list(zip(*map(lambda t: list(t.shape), tensors)))
70
+ expandable_dims = [(i, val) for i, val in enumerate(dims) if i != dim]
71
+ assert all([*map(lambda t: len(set(t[1])) <= 2, expandable_dims)]), 'invalid dimensions for broadcastable concatentation'
72
+ max_dims = list(map(lambda t: (t[0], max(t[1])), expandable_dims))
73
+ expanded_dims = list(map(lambda t: (t[0], (t[1],) * num_tensors), max_dims))
74
+ expanded_dims.insert(dim, (dim, dims[dim]))
75
+ expandable_shapes = list(zip(*map(lambda t: t[1], expanded_dims)))
76
+ tensors = list(map(lambda t: t[0].expand(*t[1]), zip(tensors, expandable_shapes)))
77
+ return torch.cat(tensors, dim = dim)
78
+
79
+ class VisionRotaryEmbeddingFast(nn.Module):
80
+ def __init__(
81
+ self,
82
+ dim,
83
+ pt_seq_len,
84
+ ft_seq_len=None,
85
+ custom_freqs = None,
86
+ freqs_for = 'lang',
87
+ theta = 10000,
88
+ max_freq = 10,
89
+ num_freqs = 1,
90
+ patch_dropout = 0.
91
+ ):
92
+ super().__init__()
93
+ if custom_freqs:
94
+ freqs = custom_freqs
95
+ elif freqs_for == 'lang':
96
+ freqs = 1. / (theta ** (torch.arange(0, dim, 2)[:(dim // 2)].float() / dim))
97
+ elif freqs_for == 'pixel':
98
+ freqs = torch.linspace(1., max_freq / 2, dim // 2) * pi
99
+ elif freqs_for == 'constant':
100
+ freqs = torch.ones(num_freqs).float()
101
+ else:
102
+ raise ValueError(f'unknown modality {freqs_for}')
103
+
104
+ if ft_seq_len is None: ft_seq_len = pt_seq_len
105
+ t = torch.arange(ft_seq_len) / ft_seq_len * pt_seq_len
106
+
107
+ freqs = torch.einsum('..., f -> ... f', t, freqs)
108
+ freqs = repeat(freqs, '... n -> ... (n r)', r = 2)
109
+ freqs = broadcat((freqs[:, None, :], freqs[None, :, :]), dim = -1)
110
+
111
+ freqs_cos = freqs.cos().view(-1, freqs.shape[-1])
112
+ freqs_sin = freqs.sin().view(-1, freqs.shape[-1])
113
+
114
+ self.patch_dropout = patch_dropout
115
+
116
+ self.register_buffer("freqs_cos", freqs_cos)
117
+ self.register_buffer("freqs_sin", freqs_sin)
118
+
119
+ # logging.info(f'Shape of rope freq: {self.freqs_cos.shape}')
120
+
121
+ def forward(self, t, patch_indices_keep=None):
122
+ if patch_indices_keep is not None:
123
+ batch = t.size()[0]
124
+ batch_indices = torch.arange(batch)
125
+ batch_indices = batch_indices[..., None]
126
+
127
+ freqs_cos = repeat(self.freqs_cos, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
128
+ freqs_sin = repeat(self.freqs_sin, 'i j -> n i m j', n=t.shape[0], m=t.shape[1])
129
+
130
+ freqs_cos = freqs_cos[batch_indices, patch_indices_keep]
131
+ freqs_cos = rearrange(freqs_cos, 'n i m j -> n m i j')
132
+ freqs_sin = freqs_sin[batch_indices, patch_indices_keep]
133
+ freqs_sin = rearrange(freqs_sin, 'n i m j -> n m i j')
134
+
135
+ return t * freqs_cos + rotate_half(t) * freqs_sin
136
+
137
+ return t * self.freqs_cos + rotate_half(t) * self.freqs_sin
138
+
139
+ # contrastive loss function, adapted from
140
+ # https://sachinruk.github.io/blog/pytorch/pytorch%20lightning/loss%20function/gpu/2021/03/07/CLIP.html
141
+ def contrastive_loss(logits: torch.Tensor) -> torch.Tensor:
142
+ return nn.functional.cross_entropy(logits, torch.arange(len(logits), device=logits.device))
143
+
144
+
145
+ def clip_loss(similarity: torch.Tensor) -> torch.Tensor:
146
+ caption_loss = contrastive_loss(similarity)
147
+ image_loss = contrastive_loss(similarity.t())
148
+ return (caption_loss + image_loss) / 2.0
149
+
150
+
151
+ @dataclass
152
+ class EvaCLIPVisionModelOutput(ModelOutput):
153
+ """
154
+ Base class for vision model's outputs that also contains image embeddings of the pooling of the last hidden states.
155
+
156
+ Args:
157
+ image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
158
+ The image embeddings obtained by applying the projection layer to the pooler_output.
159
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
160
+ Sequence of hidden-states at the output of the last layer of the model.
161
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
162
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
163
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
164
+
165
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
166
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
167
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
168
+ sequence_length)`.
169
+
170
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
171
+ heads.
172
+ """
173
+
174
+ image_embeds: Optional[torch.FloatTensor] = None
175
+ last_hidden_state: torch.FloatTensor = None
176
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
177
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
178
+
179
+
180
+ @dataclass
181
+ class EvaCLIPTextModelOutput(ModelOutput):
182
+ """
183
+ Base class for text model's outputs that also contains a pooling of the last hidden states.
184
+
185
+ Args:
186
+ text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim)` *optional* returned when model is initialized with `with_projection=True`):
187
+ The text embeddings obtained by applying the projection layer to the pooler_output.
188
+ last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
189
+ Sequence of hidden-states at the output of the last layer of the model.
190
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
191
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
192
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
193
+
194
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
195
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
196
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
197
+ sequence_length)`.
198
+
199
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
200
+ heads.
201
+ """
202
+
203
+ text_embeds: Optional[torch.FloatTensor] = None
204
+ last_hidden_state: torch.FloatTensor = None
205
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
206
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
207
+
208
+
209
+ @dataclass
210
+ class EvaCLIPOutput(ModelOutput):
211
+ """
212
+ Args:
213
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
214
+ Contrastive loss for image-text similarity.
215
+ logits_per_image:(`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
216
+ The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
217
+ similarity scores.
218
+ logits_per_text:(`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
219
+ The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
220
+ similarity scores.
221
+ text_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
222
+ The text embeddings obtained by applying the projection layer to the pooled output of [`EvaCLIPTextModel`].
223
+ image_embeds(`torch.FloatTensor` of shape `(batch_size, output_dim`):
224
+ The image embeddings obtained by applying the projection layer to the pooled output of [`EvaCLIPVisionModel`].
225
+ text_model_output(`BaseModelOutputWithPooling`):
226
+ The output of the [`EvaCLIPTextModel`].
227
+ vision_model_output(`BaseModelOutputWithPooling`):
228
+ The output of the [`EvaCLIPVisionModel`].
229
+ """
230
+
231
+ loss: Optional[torch.FloatTensor] = None
232
+ logits_per_image: torch.FloatTensor = None
233
+ logits_per_text: torch.FloatTensor = None
234
+ text_embeds: torch.FloatTensor = None
235
+ image_embeds: torch.FloatTensor = None
236
+ text_model_output: BaseModelOutputWithPooling = None
237
+ vision_model_output: BaseModelOutputWithPooling = None
238
+
239
+ def to_tuple(self) -> Tuple[Any]:
240
+ return tuple(
241
+ self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
242
+ for k in self.keys()
243
+ )
244
+
245
+
246
+ class EvaCLIPVisionEmbeddings(nn.Module):
247
+ def __init__(self, config: EvaCLIPVisionConfig):
248
+ super().__init__()
249
+ self.config = config
250
+ self.embed_dim = config.hidden_size
251
+ self.image_size = config.image_size
252
+ self.patch_size = config.patch_size
253
+
254
+ self.class_embedding = nn.Parameter(torch.randn(self.embed_dim))
255
+
256
+ self.patch_embedding = nn.Conv2d(
257
+ in_channels=config.num_channels,
258
+ out_channels=self.embed_dim,
259
+ kernel_size=self.patch_size,
260
+ stride=self.patch_size,
261
+ bias=True,
262
+ )
263
+
264
+ self.num_patches = (self.image_size // self.patch_size) ** 2
265
+ self.num_positions = self.num_patches + 1
266
+ self.position_embedding = nn.Embedding(self.num_positions, self.embed_dim)
267
+ self.register_buffer("position_ids", torch.arange(self.num_positions).expand((1, -1)), persistent = False)
268
+
269
+ def forward(self, pixel_values: torch.FloatTensor) -> torch.Tensor:
270
+ batch_size = pixel_values.shape[0]
271
+ patch_embeds = self.patch_embedding(pixel_values) # shape = [*, width, grid, grid]
272
+ patch_embeds = patch_embeds.flatten(2).transpose(1, 2)
273
+
274
+ class_embeds = self.class_embedding.expand(batch_size, 1, -1)
275
+ embeddings = torch.cat([class_embeds, patch_embeds], dim=1)
276
+ embeddings = embeddings + self.position_embedding(self.position_ids)
277
+ return embeddings
278
+
279
+
280
+ class EvaCLIPTextEmbeddings(nn.Module):
281
+ def __init__(self, config: EvaCLIPTextConfig):
282
+ super().__init__()
283
+ embed_dim = config.hidden_size
284
+
285
+ self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
286
+ self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
287
+
288
+ # position_ids (1, len position emb) is contiguous in memory and exported when serialized
289
+ self.register_buffer("position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False)
290
+
291
+ def forward(
292
+ self,
293
+ input_ids: Optional[torch.LongTensor] = None,
294
+ position_ids: Optional[torch.LongTensor] = None,
295
+ inputs_embeds: Optional[torch.FloatTensor] = None,
296
+ ) -> torch.Tensor:
297
+ seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
298
+
299
+ if position_ids is None:
300
+ position_ids = self.position_ids[:, :seq_length]
301
+
302
+ if inputs_embeds is None:
303
+ inputs_embeds = self.token_embedding(input_ids)
304
+
305
+ position_embeddings = self.position_embedding(position_ids)
306
+ embeddings = inputs_embeds + position_embeddings
307
+
308
+ return embeddings
309
+
310
+
311
+ class EvaCLIPAttention(nn.Module):
312
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
313
+
314
+ def __init__(self, config, rope=None):
315
+ super().__init__()
316
+ self.config = config
317
+ self.rope = rope
318
+ self.embed_dim = config.hidden_size
319
+ self.num_heads = config.num_attention_heads
320
+ self.head_dim = self.embed_dim // self.num_heads
321
+ if self.head_dim * self.num_heads != self.embed_dim:
322
+ raise ValueError(
323
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
324
+ f" {self.num_heads})."
325
+ )
326
+ self.scale = self.head_dim**-0.5
327
+ self.dropout = config.attention_dropout
328
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias)
329
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias)
330
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias)
331
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
332
+ subln = True
333
+ self.inner_attn_ln = nn.LayerNorm(self.embed_dim) if subln else nn.Identity()
334
+
335
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
336
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
337
+
338
+ def forward(
339
+ self,
340
+ hidden_states: torch.Tensor,
341
+ attention_mask: Optional[torch.Tensor] = None,
342
+ causal_attention_mask: Optional[torch.Tensor] = None,
343
+ output_attentions: Optional[bool] = False,
344
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
345
+ """Input shape: Batch x Time x Channel"""
346
+
347
+ bsz, tgt_len, embed_dim = hidden_states.size()
348
+
349
+ # get query proj
350
+ query_states = self.q_proj(hidden_states) * self.scale
351
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
352
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
353
+
354
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
355
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
356
+ key_states = key_states.view(*proj_shape)
357
+ value_states = value_states.view(*proj_shape)
358
+
359
+ src_len = key_states.size(1)
360
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
361
+
362
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
363
+ raise ValueError(
364
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
365
+ f" {attn_weights.size()}"
366
+ )
367
+
368
+ # apply the causal_attention_mask first
369
+ if causal_attention_mask is not None:
370
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
371
+ raise ValueError(
372
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
373
+ f" {causal_attention_mask.size()}"
374
+ )
375
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
376
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
377
+
378
+ if attention_mask is not None:
379
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
380
+ raise ValueError(
381
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
382
+ )
383
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
384
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
385
+
386
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
387
+
388
+ if output_attentions:
389
+ # this operation is a bit akward, but it's required to
390
+ # make sure that attn_weights keeps its gradient.
391
+ # In order to do so, attn_weights have to reshaped
392
+ # twice and have to be reused in the following
393
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
394
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
395
+ else:
396
+ attn_weights_reshaped = None
397
+
398
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
399
+
400
+ attn_output = torch.bmm(attn_probs, value_states)
401
+
402
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
403
+ raise ValueError(
404
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
405
+ f" {attn_output.size()}"
406
+ )
407
+
408
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
409
+ attn_output = attn_output.transpose(1, 2)
410
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
411
+
412
+ attn_output = self.inner_attn_ln(attn_output)
413
+ attn_output = self.out_proj(attn_output)
414
+
415
+ return attn_output, attn_weights_reshaped
416
+
417
+ class EvaCLIPTextAttention(nn.Module):
418
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
419
+
420
+ def __init__(self, config):
421
+ super().__init__()
422
+ self.config = config
423
+ self.embed_dim = config.hidden_size
424
+ self.num_heads = config.num_attention_heads
425
+ self.head_dim = self.embed_dim // self.num_heads
426
+ if self.head_dim * self.num_heads != self.embed_dim:
427
+ raise ValueError(
428
+ f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
429
+ f" {self.num_heads})."
430
+ )
431
+ self.scale = self.head_dim**-0.5
432
+ self.dropout = config.attention_dropout
433
+ self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.k_bias)
434
+ self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.v_bias)
435
+ self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.q_bias)
436
+ self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=True)
437
+
438
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
439
+ return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
440
+
441
+ def forward(
442
+ self,
443
+ hidden_states: torch.Tensor,
444
+ attention_mask: Optional[torch.Tensor] = None,
445
+ causal_attention_mask: Optional[torch.Tensor] = None,
446
+ output_attentions: Optional[bool] = False,
447
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
448
+ """Input shape: Batch x Time x Channel"""
449
+
450
+ bsz, tgt_len, embed_dim = hidden_states.size()
451
+
452
+ # get query proj
453
+ query_states = self.q_proj(hidden_states) * self.scale
454
+ key_states = self._shape(self.k_proj(hidden_states), -1, bsz)
455
+ value_states = self._shape(self.v_proj(hidden_states), -1, bsz)
456
+
457
+ proj_shape = (bsz * self.num_heads, -1, self.head_dim)
458
+ query_states = self._shape(query_states, tgt_len, bsz).view(*proj_shape)
459
+ key_states = key_states.view(*proj_shape)
460
+ value_states = value_states.view(*proj_shape)
461
+
462
+ if self.rope:
463
+ # slightly fast impl
464
+ q_t = query_states[:, :, 1:, :]
465
+ ro_q_t = self.rope(q_t)
466
+ query_states = torch.cat((query_states[:, :, :1, :], ro_q_t), -2).type_as(value_states)
467
+
468
+ k_t = key_states[:, :, 1:, :]
469
+ ro_k_t = self.rope(k_t)
470
+ key_states = torch.cat((key_states[:, :, :1, :], ro_k_t), -2).type_as(value_states)
471
+
472
+ src_len = key_states.size(1)
473
+ attn_weights = torch.bmm(query_states, key_states.transpose(1, 2))
474
+
475
+ if attn_weights.size() != (bsz * self.num_heads, tgt_len, src_len):
476
+ raise ValueError(
477
+ f"Attention weights should be of size {(bsz * self.num_heads, tgt_len, src_len)}, but is"
478
+ f" {attn_weights.size()}"
479
+ )
480
+
481
+ # apply the causal_attention_mask first
482
+ if causal_attention_mask is not None:
483
+ if causal_attention_mask.size() != (bsz, 1, tgt_len, src_len):
484
+ raise ValueError(
485
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is"
486
+ f" {causal_attention_mask.size()}"
487
+ )
488
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + causal_attention_mask
489
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
490
+
491
+ if attention_mask is not None:
492
+ if attention_mask.size() != (bsz, 1, tgt_len, src_len):
493
+ raise ValueError(
494
+ f"Attention mask should be of size {(bsz, 1, tgt_len, src_len)}, but is {attention_mask.size()}"
495
+ )
496
+ attn_weights = attn_weights.view(bsz, self.num_heads, tgt_len, src_len) + attention_mask
497
+ attn_weights = attn_weights.view(bsz * self.num_heads, tgt_len, src_len)
498
+
499
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
500
+
501
+ if output_attentions:
502
+ # this operation is a bit akward, but it's required to
503
+ # make sure that attn_weights keeps its gradient.
504
+ # In order to do so, attn_weights have to reshaped
505
+ # twice and have to be reused in the following
506
+ attn_weights_reshaped = attn_weights.view(bsz, self.num_heads, tgt_len, src_len)
507
+ attn_weights = attn_weights_reshaped.view(bsz * self.num_heads, tgt_len, src_len)
508
+ else:
509
+ attn_weights_reshaped = None
510
+
511
+ attn_probs = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training)
512
+
513
+ attn_output = torch.bmm(attn_probs, value_states)
514
+
515
+ if attn_output.size() != (bsz * self.num_heads, tgt_len, self.head_dim):
516
+ raise ValueError(
517
+ f"`attn_output` should be of size {(bsz, self.num_heads, tgt_len, self.head_dim)}, but is"
518
+ f" {attn_output.size()}"
519
+ )
520
+
521
+ attn_output = attn_output.view(bsz, self.num_heads, tgt_len, self.head_dim)
522
+ attn_output = attn_output.transpose(1, 2)
523
+ attn_output = attn_output.reshape(bsz, tgt_len, embed_dim)
524
+
525
+ attn_output = self.out_proj(attn_output)
526
+
527
+ return attn_output, attn_weights_reshaped
528
+
529
+ class SwiGLU(nn.Module):
530
+ def __init__(self, in_features=1024, hidden_features=None, out_features=None, act_layer=nn.SiLU, drop=0.,
531
+ norm_layer=nn.LayerNorm, subln=True):
532
+ super().__init__()
533
+ out_features = out_features or in_features
534
+ hidden_features = hidden_features or in_features
535
+
536
+ self.w1 = nn.Linear(in_features, hidden_features)
537
+ self.w2 = nn.Linear(in_features, hidden_features)
538
+
539
+ self.act = act_layer()
540
+ self.ffn_ln = norm_layer(hidden_features) if subln else nn.Identity()
541
+ self.w3 = nn.Linear(hidden_features, out_features)
542
+
543
+ self.drop = nn.Dropout(drop)
544
+
545
+ def forward(self, x):
546
+ x1 = self.w1(x)
547
+ x2 = self.w2(x)
548
+ hidden = self.act(x1) * x2
549
+ x = self.ffn_ln(hidden)
550
+ x = self.w3(x)
551
+ x = self.dr
552
+
553
+
554
+ # class EvaCLIPMLP(nn.Module):
555
+ # def __init__(self, config):
556
+ # super().__init__()
557
+ # self.config = config
558
+ # self.activation_fn = ACT2FN[config.hidden_act]
559
+ # self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
560
+ # self.fc2 = nn.Linear(config.intermediate_size, config.hidden_size)
561
+ # subln = True
562
+ # self.ffn_ln = nn.LayerNorm(config.hidden_size) if subln else nn.Identity()
563
+
564
+ # def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
565
+ # hidden_states = self.fc1(hidden_states)
566
+ # hidden_states = self.activation_fn(hidden_states)
567
+ # hidden_states = self.ffn_ln(hidden_states)
568
+ # hidden_states = self.fc2(hidden_states)
569
+ # return hidden_states
570
+
571
+ class EvaCLIPMLP(nn.Module):
572
+ def __init__(self, config):
573
+ super().__init__()
574
+ self.config = config
575
+ self.fc1 = nn.Linear(config.hidden_size, config.intermediate_size)
576
+ self.fc2 = nn.Linear(config.hidden_size, config.intermediate_size)
577
+
578
+ self.act = nn.SiLU()
579
+ subln = True
580
+ self.ffn_ln = nn.LayerNorm(config.intermediate_size) if subln else nn.Identity()
581
+ self.fc3 = nn.Linear(config.intermediate_size, config.hidden_size)
582
+
583
+ def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
584
+ x = hidden_states
585
+ x1 = self.fc1(x)
586
+ x2 = self.fc2(x)
587
+ hidden = self.act(x1) * x2
588
+ x = self.ffn_ln(hidden)
589
+ x = self.fc3(x)
590
+ return x
591
+
592
+
593
+ class EvaCLIPEncoderLayer(nn.Module):
594
+ def __init__(self, config: EvaCLIPConfig, rope=None):
595
+ super().__init__()
596
+ self.config = config
597
+ self.rope = rope
598
+ self.embed_dim = config.hidden_size
599
+ self.post_layernorm = config.post_layernorm if config.post_layernorm is not None else False
600
+ self.self_attn = EvaCLIPAttention(config, self.rope)
601
+ self.layer_norm1 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
602
+ self.mlp = EvaCLIPMLP(config)
603
+ self.layer_norm2 = nn.LayerNorm(self.embed_dim, eps=config.layer_norm_eps)
604
+
605
+ def forward(
606
+ self,
607
+ hidden_states: torch.Tensor,
608
+ attention_mask: torch.Tensor,
609
+ causal_attention_mask: torch.Tensor,
610
+ output_attentions: Optional[bool] = False,
611
+ ) -> Tuple[torch.FloatTensor]:
612
+ """
613
+ Args:
614
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
615
+ attention_mask (`torch.FloatTensor`): attention mask of size
616
+ `(batch, 1, tgt_len, src_len)` where padding elements are indicated by very large negative values.
617
+ `(config.encoder_attention_heads,)`.
618
+ output_attentions (`bool`, *optional*):
619
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
620
+ returned tensors for more detail.
621
+ """
622
+ residual = hidden_states
623
+
624
+ if not self.post_layernorm:
625
+ hidden_states = self.layer_norm1(hidden_states)
626
+ hidden_states, attn_weights = self.self_attn(
627
+ hidden_states=hidden_states,
628
+ attention_mask=attention_mask,
629
+ causal_attention_mask=causal_attention_mask,
630
+ output_attentions=output_attentions,
631
+ )
632
+ if self.post_layernorm:
633
+ hidden_states = self.layer_norm1(hidden_states)
634
+ hidden_states = residual + hidden_states
635
+ residual = hidden_states
636
+ if not self.post_layernorm:
637
+ hidden_states = self.layer_norm2(hidden_states)
638
+ hidden_states = self.mlp(hidden_states)
639
+ if self.post_layernorm:
640
+ hidden_states = self.layer_norm2(hidden_states)
641
+ hidden_states = residual + hidden_states
642
+
643
+ outputs = (hidden_states,)
644
+
645
+ if output_attentions:
646
+ outputs += (attn_weights,)
647
+
648
+ return outputs
649
+
650
+
651
+ class EvaCLIPPreTrainedModel(PreTrainedModel):
652
+ """
653
+ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
654
+ models.
655
+ """
656
+
657
+ config_class = EvaCLIPConfig
658
+ base_model_prefix = "clip"
659
+ supports_gradient_checkpointing = True
660
+ _keys_to_ignore_on_load_missing = [r"position_ids"]
661
+
662
+ def _init_weights(self, module):
663
+ """Initialize the weights"""
664
+ factor = self.config.initializer_factor
665
+ if isinstance(module, EvaCLIPTextEmbeddings):
666
+ module.token_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
667
+ module.position_embedding.weight.data.normal_(mean=0.0, std=factor * 0.02)
668
+ elif isinstance(module, EvaCLIPVisionEmbeddings):
669
+ factor = self.config.initializer_factor
670
+ nn.init.normal_(module.class_embedding, mean=0.0, std=module.embed_dim**-0.5 * factor)
671
+ nn.init.normal_(module.patch_embedding.weight, std=module.config.initializer_range * factor)
672
+ nn.init.normal_(module.position_embedding.weight, std=module.config.initializer_range * factor)
673
+ elif isinstance(module, EvaCLIPAttention):
674
+ factor = self.config.initializer_factor
675
+ in_proj_std = (module.embed_dim**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
676
+ out_proj_std = (module.embed_dim**-0.5) * factor
677
+ nn.init.normal_(module.q_proj.weight, std=in_proj_std)
678
+ nn.init.normal_(module.k_proj.weight, std=in_proj_std)
679
+ nn.init.normal_(module.v_proj.weight, std=in_proj_std)
680
+ nn.init.normal_(module.out_proj.weight, std=out_proj_std)
681
+ elif isinstance(module, EvaCLIPMLP):
682
+ factor = self.config.initializer_factor
683
+ in_proj_std = (
684
+ (module.config.hidden_size**-0.5) * ((2 * module.config.num_hidden_layers) ** -0.5) * factor
685
+ )
686
+ fc_std = (2 * module.config.hidden_size) ** -0.5 * factor
687
+ nn.init.normal_(module.fc1.weight, std=fc_std)
688
+ # nn.init.normal_(module.fc2.weight, std=in_proj_std)
689
+ nn.init.normal_(module.fc2.weight, std=fc_std)
690
+ nn.init.normal_(module.fc3.weight, std=in_proj_std)
691
+ elif isinstance(module, EvaCLIPModel):
692
+ # nn.init.normal_(
693
+ # module.text_projection.weight,
694
+ # std=module.text_embed_dim**-0.5 * self.config.initializer_factor,
695
+ # )
696
+ nn.init.normal_(
697
+ module.visual_projection.weight,
698
+ std=module.vision_embed_dim**-0.5 * self.config.initializer_factor,
699
+ )
700
+ elif isinstance(module, EvaCLIPVisionModelWithProjection):
701
+ nn.init.normal_(
702
+ module.visual_projection.weight,
703
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
704
+ )
705
+ elif isinstance(module, EvaCLIPTextModelWithProjection):
706
+ nn.init.normal_(
707
+ module.text_projection.weight,
708
+ std=self.config.hidden_size**-0.5 * self.config.initializer_factor,
709
+ )
710
+
711
+ if isinstance(module, nn.LayerNorm):
712
+ module.bias.data.zero_()
713
+ module.weight.data.fill_(1.0)
714
+ if isinstance(module, nn.Linear) and module.bias is not None:
715
+ module.bias.data.zero_()
716
+
717
+ def _set_gradient_checkpointing(self, module, value=False):
718
+ if isinstance(module, EvaCLIPEncoder):
719
+ module.gradient_checkpointing = value
720
+
721
+
722
+ EvaCLIP_START_DOCSTRING = r"""
723
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
724
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
725
+ etc.)
726
+
727
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
728
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
729
+ and behavior.
730
+
731
+ Parameters:
732
+ config ([`CLIPConfig`]): Model configuration class with all the parameters of the model.
733
+ Initializing with a config file does not load the weights associated with the model, only the
734
+ configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
735
+ """
736
+
737
+ EvaCLIP_TEXT_INPUTS_DOCSTRING = r"""
738
+ Args:
739
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
740
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
741
+ it.
742
+
743
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
744
+ [`PreTrainedTokenizer.__call__`] for details.
745
+
746
+ [What are input IDs?](../glossary#input-ids)
747
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
748
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
749
+
750
+ - 1 for tokens that are **not masked**,
751
+ - 0 for tokens that are **masked**.
752
+
753
+ [What are attention masks?](../glossary#attention-mask)
754
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
755
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
756
+ config.max_position_embeddings - 1]`.
757
+
758
+ [What are position IDs?](../glossary#position-ids)
759
+ output_attentions (`bool`, *optional*):
760
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
761
+ tensors for more detail.
762
+ output_hidden_states (`bool`, *optional*):
763
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
764
+ more detail.
765
+ return_dict (`bool`, *optional*):
766
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
767
+ """
768
+
769
+ EvaCLIP_VISION_INPUTS_DOCSTRING = r"""
770
+ Args:
771
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
772
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
773
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
774
+ output_attentions (`bool`, *optional*):
775
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
776
+ tensors for more detail.
777
+ output_hidden_states (`bool`, *optional*):
778
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
779
+ more detail.
780
+ return_dict (`bool`, *optional*):
781
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
782
+ """
783
+
784
+ EvaCLIP_INPUTS_DOCSTRING = r"""
785
+ Args:
786
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
787
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
788
+ it.
789
+
790
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
791
+ [`PreTrainedTokenizer.__call__`] for details.
792
+
793
+ [What are input IDs?](../glossary#input-ids)
794
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
795
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
796
+
797
+ - 1 for tokens that are **not masked**,
798
+ - 0 for tokens that are **masked**.
799
+
800
+ [What are attention masks?](../glossary#attention-mask)
801
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
802
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
803
+ config.max_position_embeddings - 1]`.
804
+
805
+ [What are position IDs?](../glossary#position-ids)
806
+ pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):
807
+ Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using
808
+ [`AutoImageProcessor`]. See [`CLIPImageProcessor.__call__`] for details.
809
+ return_loss (`bool`, *optional*):
810
+ Whether or not to return the contrastive loss.
811
+ output_attentions (`bool`, *optional*):
812
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
813
+ tensors for more detail.
814
+ output_hidden_states (`bool`, *optional*):
815
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
816
+ more detail.
817
+ return_dict (`bool`, *optional*):
818
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
819
+ """
820
+
821
+
822
+ class EvaCLIPEncoder(nn.Module):
823
+ """
824
+ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
825
+ [`CLIPEncoderLayer`].
826
+
827
+ Args:
828
+ config: CLIPConfig
829
+ """
830
+
831
+ def __init__(self, config: EvaCLIPConfig, rope=False):
832
+ super().__init__()
833
+ self.config = config
834
+ self.layers = nn.ModuleList([EvaCLIPEncoderLayer(config, rope) for _ in range(config.num_hidden_layers)])
835
+ self.gradient_checkpointing = False
836
+
837
+ def forward(
838
+ self,
839
+ inputs_embeds,
840
+ attention_mask: Optional[torch.Tensor] = None,
841
+ causal_attention_mask: Optional[torch.Tensor] = None,
842
+ output_attentions: Optional[bool] = None,
843
+ output_hidden_states: Optional[bool] = None,
844
+ return_dict: Optional[bool] = None,
845
+ ) -> Union[Tuple, BaseModelOutput]:
846
+ r"""
847
+ Args:
848
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
849
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
850
+ This is useful if you want more control over how to convert `input_ids` indices into associated vectors
851
+ than the model's internal embedding lookup matrix.
852
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
853
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
854
+
855
+ - 1 for tokens that are **not masked**,
856
+ - 0 for tokens that are **masked**.
857
+
858
+ [What are attention masks?](../glossary#attention-mask)
859
+ causal_attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
860
+ Causal mask for the text model. Mask values selected in `[0, 1]`:
861
+
862
+ - 1 for tokens that are **not masked**,
863
+ - 0 for tokens that are **masked**.
864
+
865
+ [What are attention masks?](../glossary#attention-mask)
866
+ output_attentions (`bool`, *optional*):
867
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
868
+ returned tensors for more detail.
869
+ output_hidden_states (`bool`, *optional*):
870
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
871
+ for more detail.
872
+ return_dict (`bool`, *optional*):
873
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
874
+ """
875
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
876
+ output_hidden_states = (
877
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
878
+ )
879
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
880
+
881
+ encoder_states = () if output_hidden_states else None
882
+ all_attentions = () if output_attentions else None
883
+
884
+ hidden_states = inputs_embeds
885
+ for idx, encoder_layer in enumerate(self.layers):
886
+ if output_hidden_states:
887
+ encoder_states = encoder_states + (hidden_states,)
888
+ if self.gradient_checkpointing and self.training:
889
+
890
+ def create_custom_forward(module):
891
+ def custom_forward(*inputs):
892
+ return module(*inputs, output_attentions)
893
+
894
+ return custom_forward
895
+
896
+ layer_outputs = torch.utils.checkpoint.checkpoint(
897
+ create_custom_forward(encoder_layer),
898
+ hidden_states,
899
+ attention_mask,
900
+ causal_attention_mask,
901
+ )
902
+ else:
903
+ layer_outputs = encoder_layer(
904
+ hidden_states,
905
+ attention_mask,
906
+ causal_attention_mask,
907
+ output_attentions=output_attentions,
908
+ )
909
+
910
+ hidden_states = layer_outputs[0]
911
+
912
+ if output_attentions:
913
+ all_attentions = all_attentions + (layer_outputs[1],)
914
+
915
+ if output_hidden_states:
916
+ encoder_states = encoder_states + (hidden_states,)
917
+
918
+ if not return_dict:
919
+ return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None)
920
+ return BaseModelOutput(
921
+ last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions
922
+ )
923
+
924
+
925
+ class EvaCLIPTextTransformer(nn.Module):
926
+ def __init__(self, config: EvaCLIPTextConfig):
927
+ super().__init__()
928
+ self.config = config
929
+ embed_dim = config.hidden_size
930
+ self.embeddings = EvaCLIPTextEmbeddings(config)
931
+ self.encoder = EvaCLIPEncoder(config)
932
+ self.final_layer_norm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
933
+
934
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
935
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPTextConfig)
936
+ def forward(
937
+ self,
938
+ input_ids: Optional[torch.Tensor] = None,
939
+ attention_mask: Optional[torch.Tensor] = None,
940
+ position_ids: Optional[torch.Tensor] = None,
941
+ output_attentions: Optional[bool] = None,
942
+ output_hidden_states: Optional[bool] = None,
943
+ return_dict: Optional[bool] = None,
944
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
945
+ r"""
946
+ Returns:
947
+
948
+ """
949
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
950
+ output_hidden_states = (
951
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
952
+ )
953
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
954
+
955
+ if input_ids is None:
956
+ raise ValueError("You have to specify input_ids")
957
+
958
+ input_shape = input_ids.size()
959
+ input_ids = input_ids.view(-1, input_shape[-1])
960
+
961
+ hidden_states = self.embeddings(input_ids=input_ids, position_ids=position_ids)
962
+
963
+ bsz, seq_len = input_shape
964
+ # CLIP's text model uses causal mask, prepare it here.
965
+ # https://github.com/openai/CLIP/blob/cfcffb90e69f37bf2ff1e988237a0fbe41f33c04/clip/model.py#L324
966
+ causal_attention_mask = self._build_causal_attention_mask(bsz, seq_len, hidden_states.dtype).to(
967
+ hidden_states.device
968
+ )
969
+ # expand attention_mask
970
+ if attention_mask is not None:
971
+ # [bsz, seq_len] -> [bsz, 1, tgt_seq_len, src_seq_len]
972
+ attention_mask = _expand_mask(attention_mask, hidden_states.dtype)
973
+
974
+ encoder_outputs = self.encoder(
975
+ inputs_embeds=hidden_states,
976
+ attention_mask=attention_mask,
977
+ causal_attention_mask=causal_attention_mask,
978
+ output_attentions=output_attentions,
979
+ output_hidden_states=output_hidden_states,
980
+ return_dict=return_dict,
981
+ )
982
+
983
+ last_hidden_state = encoder_outputs[0]
984
+ last_hidden_state = self.final_layer_norm(last_hidden_state)
985
+
986
+ # text_embeds.shape = [batch_size, sequence_length, transformer.width]
987
+ # take features from the eot embedding (eot_token is the highest number in each sequence)
988
+ # casting to torch.int for onnx compatibility: argmax doesn't support int64 inputs with opset 14
989
+ pooled_output = last_hidden_state[
990
+ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
991
+ input_ids.to(dtype=torch.int, device=last_hidden_state.device).argmax(dim=-1),
992
+ ]
993
+
994
+ if not return_dict:
995
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
996
+
997
+ return BaseModelOutputWithPooling(
998
+ last_hidden_state=last_hidden_state,
999
+ pooler_output=pooled_output,
1000
+ hidden_states=encoder_outputs.hidden_states,
1001
+ attentions=encoder_outputs.attentions,
1002
+ )
1003
+
1004
+ def _build_causal_attention_mask(self, bsz, seq_len, dtype):
1005
+ # lazily create causal attention mask, with full attention between the vision tokens
1006
+ # pytorch uses additive attention mask; fill with -inf
1007
+ mask = torch.empty(bsz, seq_len, seq_len, dtype=dtype)
1008
+ mask.fill_(torch.tensor(torch.finfo(dtype).min))
1009
+ mask.triu_(1) # zero out the lower diagonal
1010
+ mask = mask.unsqueeze(1) # expand mask
1011
+ return mask
1012
+
1013
+
1014
+ @add_start_docstrings(
1015
+ """The text model from EvaCLIP without any head or projection on top.""",
1016
+ EvaCLIP_START_DOCSTRING,
1017
+ )
1018
+ class EvaCLIPTextModel(EvaCLIPPreTrainedModel):
1019
+ config_class = EvaCLIPTextConfig
1020
+
1021
+ _no_split_modules = ["EvaCLIPEncoderLayer"]
1022
+
1023
+ def __init__(self, config: EvaCLIPTextConfig):
1024
+ super().__init__(config)
1025
+ self.text_model = EvaCLIPTextTransformer(config)
1026
+ # Initialize weights and apply final processing
1027
+ self.post_init()
1028
+
1029
+ def get_input_embeddings(self) -> nn.Module:
1030
+ return self.text_model.embeddings.token_embedding
1031
+
1032
+ def set_input_embeddings(self, value):
1033
+ self.text_model.embeddings.token_embedding = value
1034
+
1035
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
1036
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPTextConfig)
1037
+ def forward(
1038
+ self,
1039
+ input_ids: Optional[torch.Tensor] = None,
1040
+ attention_mask: Optional[torch.Tensor] = None,
1041
+ position_ids: Optional[torch.Tensor] = None,
1042
+ output_attentions: Optional[bool] = None,
1043
+ output_hidden_states: Optional[bool] = None,
1044
+ return_dict: Optional[bool] = None,
1045
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1046
+ r"""
1047
+ Returns:
1048
+
1049
+ Examples:
1050
+
1051
+ ```python
1052
+ >>> from transformers import AutoTokenizer, CLIPTextModel
1053
+
1054
+ >>> model = CLIPTextModel.from_pretrained("openai/clip-vit-base-patch32")
1055
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1056
+
1057
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
1058
+
1059
+ >>> outputs = model(**inputs)
1060
+ >>> last_hidden_state = outputs.last_hidden_state
1061
+ >>> pooled_output = outputs.pooler_output # pooled (EOS token) states
1062
+ ```"""
1063
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1064
+
1065
+ return self.text_model(
1066
+ input_ids=input_ids,
1067
+ attention_mask=attention_mask,
1068
+ position_ids=position_ids,
1069
+ output_attentions=output_attentions,
1070
+ output_hidden_states=output_hidden_states,
1071
+ return_dict=return_dict,
1072
+ )
1073
+
1074
+
1075
+ class EvaCLIPVisionTransformer(nn.Module):
1076
+ def __init__(self, config: EvaCLIPVisionConfig):
1077
+ super().__init__()
1078
+ self.config = config
1079
+ embed_dim = config.hidden_size
1080
+
1081
+ rope = True
1082
+ pt_hw_seq_len=16
1083
+ intp_freq=True
1084
+ if rope:
1085
+ half_head_dim = config.hidden_size // config.num_attention_heads // 2
1086
+ hw_seq_len = config.image_size // config.patch_size
1087
+ self.rope = VisionRotaryEmbeddingFast(
1088
+ dim=half_head_dim,
1089
+ pt_seq_len=pt_hw_seq_len,
1090
+ ft_seq_len=hw_seq_len if intp_freq else None,
1091
+ # patch_dropout=patch_dropout
1092
+ )
1093
+ else:
1094
+ self.rope = None
1095
+
1096
+ self.embeddings = EvaCLIPVisionEmbeddings(config)
1097
+ self.encoder = EvaCLIPEncoder(config, self.rope)
1098
+ self.post_layernorm = nn.LayerNorm(embed_dim, eps=config.layer_norm_eps)
1099
+
1100
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1101
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPVisionConfig)
1102
+ def forward(
1103
+ self,
1104
+ pixel_values: Optional[torch.FloatTensor] = None,
1105
+ output_attentions: Optional[bool] = None,
1106
+ output_hidden_states: Optional[bool] = None,
1107
+ return_dict: Optional[bool] = None,
1108
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1109
+ r"""
1110
+ Returns:
1111
+
1112
+ """
1113
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1114
+ output_hidden_states = (
1115
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1116
+ )
1117
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1118
+
1119
+ if pixel_values is None:
1120
+ raise ValueError("You have to specify pixel_values")
1121
+
1122
+ hidden_states = self.embeddings(pixel_values)
1123
+
1124
+ encoder_outputs = self.encoder(
1125
+ inputs_embeds=hidden_states,
1126
+ output_attentions=output_attentions,
1127
+ output_hidden_states=output_hidden_states,
1128
+ return_dict=return_dict,
1129
+ )
1130
+
1131
+ last_hidden_state = encoder_outputs[0]
1132
+ pooled_output = last_hidden_state[:, 0, :]
1133
+ pooled_output = self.post_layernorm(pooled_output)
1134
+
1135
+ if not return_dict:
1136
+ return (last_hidden_state, pooled_output) + encoder_outputs[1:]
1137
+
1138
+ return BaseModelOutputWithPooling(
1139
+ last_hidden_state=last_hidden_state,
1140
+ pooler_output=pooled_output,
1141
+ hidden_states=encoder_outputs.hidden_states,
1142
+ attentions=encoder_outputs.attentions,
1143
+ )
1144
+
1145
+
1146
+ @add_start_docstrings(
1147
+ """The vision model from EvaCLIP without any head or projection on top.""",
1148
+ EvaCLIP_START_DOCSTRING,
1149
+ )
1150
+ class EvaCLIPVisionModel(EvaCLIPPreTrainedModel):
1151
+ config_class = EvaCLIPVisionConfig
1152
+ main_input_name = "pixel_values"
1153
+
1154
+ def __init__(self, config: EvaCLIPVisionConfig):
1155
+ super().__init__(config)
1156
+ self.vision_model = EvaCLIPVisionTransformer(config)
1157
+ # Initialize weights and apply final processing
1158
+ self.post_init()
1159
+
1160
+ def get_input_embeddings(self) -> nn.Module:
1161
+ return self.vision_model.embeddings.patch_embedding
1162
+
1163
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1164
+ @replace_return_docstrings(output_type=BaseModelOutputWithPooling, config_class=EvaCLIPVisionConfig)
1165
+ def forward(
1166
+ self,
1167
+ pixel_values: Optional[torch.FloatTensor] = None,
1168
+ output_attentions: Optional[bool] = None,
1169
+ output_hidden_states: Optional[bool] = None,
1170
+ return_dict: Optional[bool] = None,
1171
+ ) -> Union[Tuple, BaseModelOutputWithPooling]:
1172
+ r"""
1173
+ Returns:
1174
+
1175
+ Examples:
1176
+
1177
+ ```python
1178
+ >>> from PIL import Image
1179
+ >>> import requests
1180
+ >>> from transformers import AutoProcessor, CLIPVisionModel
1181
+
1182
+ >>> model = CLIPVisionModel.from_pretrained("openai/clip-vit-base-patch32")
1183
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1184
+
1185
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1186
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1187
+
1188
+ >>> inputs = processor(images=image, return_tensors="pt")
1189
+
1190
+ >>> outputs = model(**inputs)
1191
+ >>> last_hidden_state = outputs.last_hidden_state
1192
+ >>> pooled_output = outputs.pooler_output # pooled CLS states
1193
+ ```"""
1194
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1195
+
1196
+ return self.vision_model(
1197
+ pixel_values=pixel_values,
1198
+ output_attentions=output_attentions,
1199
+ output_hidden_states=output_hidden_states,
1200
+ return_dict=return_dict,
1201
+ )
1202
+
1203
+
1204
+ @add_start_docstrings(EvaCLIP_START_DOCSTRING)
1205
+ class EvaCLIPModel(EvaCLIPPreTrainedModel):
1206
+ config_class = EvaCLIPConfig
1207
+
1208
+ def __init__(self, config: EvaCLIPConfig):
1209
+ super().__init__(config)
1210
+
1211
+ # if not (type(config.text_config).__name__ == "EvaCLIPTextConfig"):
1212
+ # raise ValueError(
1213
+ # "config.text_config is expected to be of type EvaCLIPTextConfig but is of type"
1214
+ # f" {type(config.text_config)}."
1215
+ # )
1216
+
1217
+ if not (type(config.vision_config).__name__ == "EvaCLIPVisionConfig"):
1218
+ raise ValueError(
1219
+ "config.vision_config is expected to be of type EvaCLIPVisionConfig but is of type"
1220
+ f" {type(config.vision_config)}."
1221
+ )
1222
+
1223
+ text_config = config.text_config
1224
+ vision_config = config.vision_config
1225
+
1226
+ self.projection_dim = config.projection_dim
1227
+ self.text_embed_dim = text_config.hidden_size
1228
+ self.vision_embed_dim = vision_config.hidden_size
1229
+
1230
+ # self.text_model = EvaCLIPTextTransformer(text_config)
1231
+ self.vision_model = EvaCLIPVisionTransformer(vision_config)
1232
+
1233
+ self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=True)
1234
+ # self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
1235
+ # self.logit_scale = nn.Parameter(torch.ones([]) * self.config.logit_scale_init_value)
1236
+
1237
+ # Initialize weights and apply final processing
1238
+ self.post_init()
1239
+
1240
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1241
+ def get_image_features(
1242
+ self,
1243
+ pixel_values: Optional[torch.FloatTensor] = None,
1244
+ output_attentions: Optional[bool] = None,
1245
+ output_hidden_states: Optional[bool] = None,
1246
+ return_dict: Optional[bool] = None,
1247
+ ) -> torch.FloatTensor:
1248
+ r"""
1249
+ Returns:
1250
+ image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
1251
+ applying the projection layer to the pooled output of [`EvaCLIPVisionModel`].
1252
+
1253
+ Examples:
1254
+
1255
+ ```python
1256
+ >>> from PIL import Image
1257
+ >>> import requests
1258
+ >>> from transformers import AutoProcessor, CLIPModel
1259
+
1260
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1261
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1262
+
1263
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1264
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1265
+
1266
+ >>> inputs = processor(images=image, return_tensors="pt")
1267
+
1268
+ >>> image_features = model.get_image_features(**inputs)
1269
+ ```"""
1270
+ # Use EvaCLIP model's config for some fields (if specified) instead of those of vision & text components.
1271
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1272
+ output_hidden_states = (
1273
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1274
+ )
1275
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1276
+
1277
+ vision_outputs = self.vision_model(
1278
+ pixel_values=pixel_values,
1279
+ output_attentions=output_attentions,
1280
+ output_hidden_states=output_hidden_states,
1281
+ return_dict=return_dict,
1282
+ )
1283
+
1284
+ pooled_output = vision_outputs[1] # pooled_output
1285
+ image_features = self.visual_projection(pooled_output)
1286
+
1287
+ return image_features
1288
+
1289
+ @add_start_docstrings_to_model_forward(EvaCLIP_INPUTS_DOCSTRING)
1290
+ @replace_return_docstrings(output_type=EvaCLIPOutput, config_class=EvaCLIPConfig)
1291
+ def forward(
1292
+ self,
1293
+ pixel_values: Optional[torch.FloatTensor] = None,
1294
+ output_attentions: Optional[bool] = None,
1295
+ output_hidden_states: Optional[bool] = None,
1296
+ return_dict: Optional[bool] = None,
1297
+ ) -> Union[Tuple, EvaCLIPOutput]:
1298
+ r"""
1299
+ Returns:
1300
+
1301
+ Examples:
1302
+
1303
+ ```python
1304
+ >>> from PIL import Image
1305
+ >>> import requests
1306
+ >>> from transformers import AutoProcessor, CLIPModel
1307
+
1308
+ >>> model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
1309
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1310
+
1311
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1312
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1313
+
1314
+ >>> inputs = processor(
1315
+ ... images=image, return_tensors="pt"
1316
+ ... )
1317
+
1318
+ >>> outputs = model(**inputs)
1319
+ >>> image_embeds = outputs.image_embeds # this is the image embedding
1320
+ ```"""
1321
+ # Use CLIP model's config for some fields (if specified) instead of those of vision & text components.
1322
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1323
+ output_hidden_states = (
1324
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1325
+ )
1326
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1327
+
1328
+ vision_outputs = self.vision_model(
1329
+ pixel_values=pixel_values,
1330
+ output_attentions=output_attentions,
1331
+ output_hidden_states=output_hidden_states,
1332
+ return_dict=return_dict,
1333
+ )
1334
+
1335
+ image_embeds = vision_outputs[1]
1336
+ image_embeds = self.visual_projection(image_embeds)
1337
+
1338
+ # normalized features
1339
+ image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
1340
+ if not return_dict:
1341
+ output = (image_embeds, vision_outputs)
1342
+ return output
1343
+
1344
+ return EvaCLIPOutput(
1345
+ loss=None,
1346
+ logits_per_image=None,
1347
+ logits_per_text=None,
1348
+ text_embeds=None,
1349
+ image_embeds=image_embeds,
1350
+ text_model_output=None,
1351
+ vision_model_output=vision_outputs,
1352
+ )
1353
+
1354
+ @add_start_docstrings(
1355
+ """
1356
+ EvaCLIP Text Model with a projection layer on top (a linear layer on top of the pooled output).
1357
+ """,
1358
+ EvaCLIP_START_DOCSTRING,
1359
+ )
1360
+ class EvaCLIPTextModelWithProjection(EvaCLIPPreTrainedModel):
1361
+ config_class = EvaCLIPTextConfig
1362
+
1363
+ _no_split_modules = ["EvaCLIPEncoderLayer"]
1364
+
1365
+ def __init__(self, config: EvaCLIPTextConfig):
1366
+ super().__init__(config)
1367
+
1368
+ self.text_model = EvaCLIPTextTransformer(config)
1369
+
1370
+ self.text_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
1371
+
1372
+ # Initialize weights and apply final processing
1373
+ self.posxt_init()
1374
+
1375
+ def get_input_embeddings(self) -> nn.Module:
1376
+ return self.text_model.embeddings.token_embedding
1377
+
1378
+ def set_input_embeddings(self, value):
1379
+ self.text_model.embeddings.token_embedding = value
1380
+
1381
+ @add_start_docstrings_to_model_forward(EvaCLIP_TEXT_INPUTS_DOCSTRING)
1382
+ @replace_return_docstrings(output_type=EvaCLIPTextModelOutput, config_class=EvaCLIPTextConfig)
1383
+ def forward(
1384
+ self,
1385
+ input_ids: Optional[torch.Tensor] = None,
1386
+ attention_mask: Optional[torch.Tensor] = None,
1387
+ position_ids: Optional[torch.Tensor] = None,
1388
+ output_attentions: Optional[bool] = None,
1389
+ output_hidden_states: Optional[bool] = None,
1390
+ return_dict: Optional[bool] = None,
1391
+ ) -> Union[Tuple, EvaCLIPTextModelOutput]:
1392
+ r"""
1393
+ Returns:
1394
+
1395
+ Examples:
1396
+
1397
+ ```python
1398
+ >>> from transformers import AutoTokenizer, CLIPTextModelWithProjection
1399
+
1400
+ >>> model = CLIPTextModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1401
+ >>> tokenizer = AutoTokenizer.from_pretrained("openai/clip-vit-base-patch32")
1402
+
1403
+ >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
1404
+
1405
+ >>> outputs = model(**inputs)
1406
+ >>> text_embeds = outputs.text_embeds
1407
+ ```"""
1408
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1409
+
1410
+ text_outputs = self.text_model(
1411
+ input_ids=input_ids,
1412
+ attention_mask=attention_mask,
1413
+ position_ids=position_ids,
1414
+ output_attentions=output_attentions,
1415
+ output_hidden_states=output_hidden_states,
1416
+ return_dict=return_dict,
1417
+ )
1418
+
1419
+ pooled_output = text_outputs[1]
1420
+
1421
+ text_embeds = self.text_projection(pooled_output)
1422
+
1423
+ if not return_dict:
1424
+ outputs = (text_embeds, text_outputs[0]) + text_outputs[2:]
1425
+ return tuple(output for output in outputs if output is not None)
1426
+
1427
+ return EvaCLIPTextModelOutput(
1428
+ text_embeds=text_embeds,
1429
+ last_hidden_state=text_outputs.last_hidden_state,
1430
+ hidden_states=text_outputs.hidden_states,
1431
+ attentions=text_outputs.attentions,
1432
+ )
1433
+
1434
+
1435
+ @add_start_docstrings(
1436
+ """
1437
+ EvaCLIP Vision Model with a projection layer on top (a linear layer on top of the pooled output).
1438
+ """,
1439
+ EvaCLIP_START_DOCSTRING,
1440
+ )
1441
+ class EvaCLIPVisionModelWithProjection(EvaCLIPPreTrainedModel):
1442
+ config_class = EvaCLIPVisionConfig
1443
+ main_input_name = "pixel_values"
1444
+
1445
+ def __init__(self, config: EvaCLIPVisionConfig):
1446
+ super().__init__(config)
1447
+
1448
+ self.vision_model = EvaCLIPVisionTransformer(config)
1449
+
1450
+ self.visual_projection = nn.Linear(config.hidden_size, config.projection_dim, bias=False)
1451
+
1452
+ # Initialize weights and apply final processing
1453
+ self.post_init()
1454
+
1455
+ def get_input_embeddings(self) -> nn.Module:
1456
+ return self.vision_model.embeddings.patch_embedding
1457
+
1458
+ @add_start_docstrings_to_model_forward(EvaCLIP_VISION_INPUTS_DOCSTRING)
1459
+ @replace_return_docstrings(output_type=EvaCLIPVisionModelOutput, config_class=EvaCLIPVisionConfig)
1460
+ def forward(
1461
+ self,
1462
+ pixel_values: Optional[torch.FloatTensor] = None,
1463
+ output_attentions: Optional[bool] = None,
1464
+ output_hidden_states: Optional[bool] = None,
1465
+ return_dict: Optional[bool] = None,
1466
+ ) -> Union[Tuple, EvaCLIPVisionModelOutput]:
1467
+ r"""
1468
+ Returns:
1469
+
1470
+ Examples:
1471
+
1472
+ ```python
1473
+ >>> from PIL import Image
1474
+ >>> import requests
1475
+ >>> from transformers import AutoProcessor, CLIPVisionModelWithProjection
1476
+
1477
+ >>> model = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-base-patch32")
1478
+ >>> processor = AutoProcessor.from_pretrained("openai/clip-vit-base-patch32")
1479
+
1480
+ >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
1481
+ >>> image = Image.open(requests.get(url, stream=True).raw)
1482
+
1483
+ >>> inputs = processor(images=image, return_tensors="pt")
1484
+
1485
+ >>> outputs = model(**inputs)
1486
+ >>> image_embeds = outputs.image_embeds
1487
+ ```"""
1488
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1489
+
1490
+ vision_outputs = self.vision_model(
1491
+ pixel_values=pixel_values,
1492
+ output_attentions=output_attentions,
1493
+ output_hidden_states=output_hidden_states,
1494
+ return_dict=return_dict,
1495
+ )
1496
+
1497
+ pooled_output = vision_outputs[1] # pooled_output
1498
+
1499
+ image_embeds = self.visual_projection(pooled_output)
1500
+
1501
+ if not return_dict:
1502
+ outputs = (image_embeds, vision_outputs[0]) + vision_outputs[2:]
1503
+ return tuple(output for output in outputs if output is not None)
1504
+
1505
+ return EvaCLIPVisionModelOutput(
1506
+ image_embeds=image_embeds,
1507
+ last_hidden_state=vision_outputs.last_hidden_state,
1508
+ hidden_states=vision_outputs.hidden_states,
1509
+ attentions=vision_outputs.attentions,
1510
+ )
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68ac7bce3b6323b8628e67fb8c4f0dfc623072dc8aa45d80c0bba8faa1ceb838
3
+ size 1220304274
teaser.png ADDED