|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Any, Dict, List, Optional, Union |
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
|
|
from functools import cached_property |
|
|
|
""" Phi3Small model configuration """ |
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
def next_mult(x, y): |
|
return (x + y - 1) // y * y |
|
|
|
class Phi3SmallConfig(PretrainedConfig): |
|
""" |
|
This is the configuration class to store the configuration of a [`GPT2Model`] or a [`TFGPT2Model`]. It is used to |
|
instantiate a GPT-2 model according to the specified arguments, defining the model architecture. Instantiating a |
|
configuration with the defaults will yield a similar configuration to that of the GPT-2 |
|
[gpt2](https://huggingface.co/gpt2) architecture. |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
Args: |
|
vocab_size (`int`, *optional*, defaults to 50257): |
|
Vocabulary size of the GPT-2 model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`GPT2Model`] or [`TFGPT2Model`]. |
|
n_positions (`int`, *optional*, defaults to 1024): |
|
The maximum sequence length that this model might ever be used with. Typically set this to something large |
|
just in case (e.g., 512 or 1024 or 2048). |
|
n_embd (`int`, *optional*, defaults to 768): |
|
Dimensionality of the embeddings and hidden states. |
|
n_layer (`int`, *optional*, defaults to 12): |
|
Number of hidden layers in the Transformer encoder. |
|
n_head (`int`, *optional*, defaults to 12): |
|
Number of attention heads for each attention layer in the Transformer encoder. |
|
n_inner (`int`, *optional*, defaults to None): |
|
Dimensionality of the inner feed-forward layers. `None` will set it to 4 times n_embd |
|
activation_function (`str`, *optional*, defaults to `"gelu"`): |
|
Activation function, to be selected in the list `["relu", "silu", "gelu", "tanh", "gelu_new"]`. |
|
resid_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler. |
|
embd_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the embeddings. |
|
attn_pdrop (`float`, *optional*, defaults to 0.1): |
|
The dropout ratio for the attention. |
|
layer_norm_epsilon (`float`, *optional*, defaults to 1e-5): |
|
The epsilon to use in the layer normalization layers. |
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
Whether or not the model should return the last key/values attentions (not used by all models). |
|
scale_attn_by_inverse_layer_idx (`bool`, *optional*, defaults to `False`): |
|
Whether to additionally scale attention weights by `1 / layer_idx + 1`. |
|
reorder_and_upcast_attn (`bool`, *optional*, defaults to `False`): |
|
Whether to scale keys (K) prior to computing attention (dot-product) and upcast attention |
|
dot-product/softmax to float() when training with mixed precision. |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import Phi3SmallConfig, Phi3SmallModel |
|
|
|
>>> # Initializing a Phi3Small configuration |
|
>>> configuration = Phi3SmallConfig() |
|
|
|
>>> # Initializing a model (with random weights) from the configuration |
|
>>> model = Phi3SmallModel(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "phi3small" |
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
|
|
|
def __init__( |
|
self, |
|
|
|
vocab_size: int =100352, |
|
max_position_embeddings: int = 8192, |
|
|
|
rope_embedding_base: float = 10**6, |
|
rope_position_scale: float = 1.0, |
|
rope_scaling: Optional[Dict[str, Union[float, List[float], int]]] = None, |
|
|
|
hidden_size: int = 4096, |
|
num_hidden_layers: int = 32, |
|
|
|
num_attention_heads: int = 32, |
|
num_key_value_heads: int = 8, |
|
|
|
hidden_act: str = "gegelu", |
|
gegelu_limit: float = 20.0, |
|
gegelu_pad_to_256: bool = True, |
|
ff_dim_multiplier: Optional[int] = None, |
|
ff_intermediate_size: Optional[int] = 14336, |
|
|
|
blocksparse_homo_head_pattern: bool = False, |
|
blocksparse_block_size: int = 64, |
|
blocksparse_num_local_blocks: int = 16, |
|
blocksparse_vert_stride: int = 8, |
|
blocksparse_triton_kernel_block_size: int = 64, |
|
|
|
dense_attention_every_n_layers: Optional[int] = 2, |
|
|
|
embedding_dropout_prob: float =0.1, |
|
attention_dropout_prob: float = 0.0, |
|
ffn_dropout_prob: float = 0.1, |
|
layer_norm_epsilon=1e-5, |
|
initializer_range=0.02, |
|
|
|
mup_use_scaling: bool = True, |
|
mup_width_multiplier: bool = 8.0, |
|
mup_embedding_multiplier: bool = 10.0, |
|
mup_attn_multiplier: bool =1.0, |
|
use_cache=True, |
|
|
|
|
|
|
|
bos_token_id: int = 100257, |
|
eos_token_id: int = 100257, |
|
reorder_and_upcast_attn=False, |
|
|
|
pad_sequence_to_multiple_of_64: bool = True, |
|
**kwargs, |
|
): |
|
self.vocab_size = vocab_size |
|
self.max_position_embeddings = max_position_embeddings |
|
self.rope_embedding_base = rope_embedding_base |
|
self.rope_position_scale = rope_position_scale |
|
self.rope_scaling = rope_scaling |
|
self.hidden_size = hidden_size |
|
|
|
self.num_hidden_layers = num_hidden_layers |
|
self.num_attention_heads = num_attention_heads |
|
self.num_key_value_heads = num_key_value_heads |
|
|
|
self.blocksparse_homo_head_pattern = blocksparse_homo_head_pattern |
|
self.blocksparse_block_size = blocksparse_block_size |
|
self.blocksparse_num_local_blocks = blocksparse_num_local_blocks |
|
self.blocksparse_vert_stride = blocksparse_vert_stride |
|
self.blocksparse_triton_kernel_block_size = blocksparse_triton_kernel_block_size |
|
|
|
self.dense_attention_every_n_layers = dense_attention_every_n_layers |
|
|
|
|
|
self.hidden_act = hidden_act |
|
self.gegelu_limit = gegelu_limit |
|
self.gegelu_pad_to_256 = gegelu_pad_to_256 |
|
self.ff_dim_multiplier = ff_dim_multiplier |
|
self.ff_intermediate_size = ff_intermediate_size |
|
if self.ff_dim_multiplier is None and self.ff_intermediate_size is None: |
|
raise ValueError(f"Cannot have both {self.ff_dim_multiplier} and {self.ff_intermediate_size} as None") |
|
if self.ff_dim_multiplier is not None and self.ff_intermediate_size is not None: |
|
raise ValueError(f"Cannot specify both {self.ff_dim_multiplier} and {self.ff_intermediate_size}.") |
|
|
|
self.embedding_dropout_prob = embedding_dropout_prob |
|
self.attention_dropout_prob = attention_dropout_prob |
|
self.ffn_dropout_prob = ffn_dropout_prob |
|
|
|
self.layer_norm_epsilon = layer_norm_epsilon |
|
self.initializer_range = initializer_range |
|
|
|
|
|
self.mup_use_scaling = mup_use_scaling |
|
self.mup_width_multiplier = mup_width_multiplier |
|
self.mup_embedding_multiplier = mup_embedding_multiplier |
|
self.mup_attn_multiplier = mup_attn_multiplier |
|
self.use_cache = use_cache |
|
|
|
self.reorder_and_upcast_attn = reorder_and_upcast_attn |
|
self.pad_sequence_to_multiple_of_64 = pad_sequence_to_multiple_of_64 |
|
|
|
self.bos_token_id = bos_token_id |
|
self.eos_token_id = eos_token_id |
|
|
|
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, **kwargs) |
|
|
|
@cached_property |
|
def dummy_token_indices(self) -> List[int]: |
|
|
|
from .tokenization_phi3_small import Phi3SmallTokenizer |
|
tokenizer = Phi3SmallTokenizer() |
|
return tokenizer.dummy_token_indices |
|
|
|
@property |
|
def intermediate_size(self) -> int: |
|
if self.ff_intermediate_size is not None: |
|
return self.ff_intermediate_size |
|
intermediate_size = (self.ff_dim_multiplier) * (self.hidden_size // 3) * 2 |
|
if self.gegelu_pad_to_256: |
|
intermediate_size = next_mult(intermediate_size, 256) |
|
return intermediate_size |
|
|