gugarosa commited on
Commit
bbace88
·
1 Parent(s): 8d2c4ce

Update to new model interface.

Browse files
Files changed (4) hide show
  1. config.json +11 -6
  2. configuration_phi.py +62 -0
  3. modeling_phi.py +907 -0
  4. pytorch_model.bin +2 -2
config.json CHANGED
@@ -1,19 +1,24 @@
1
  {
2
- "_name_or_path": "phi-1-half",
3
  "activation_function": "gelu_new",
4
  "architectures": [
5
- "MixFormerSequentialForCausalLM"
6
  ],
 
7
  "auto_map": {
8
- "AutoConfig": "configuration_mixformer_sequential.MixFormerSequentialConfig",
9
- "AutoModelForCausalLM": "modeling_mixformer_sequential.MixFormerSequentialForCausalLM"
10
  },
11
  "embd_pdrop": 0.0,
 
 
 
12
  "initializer_range": 0.02,
13
  "layer_norm_epsilon": 1e-05,
14
- "model_type": "mixformer-sequential",
15
  "n_embd": 2048,
16
  "n_head": 32,
 
17
  "n_inner": null,
18
  "n_layer": 24,
19
  "n_positions": 2048,
@@ -21,6 +26,6 @@
21
  "rotary_dim": 32,
22
  "tie_word_embeddings": false,
23
  "torch_dtype": "float16",
24
- "transformers_version": "4.32.1",
25
  "vocab_size": 51200
26
  }
 
1
  {
2
+ "_name_or_path": "microsoft/phi-1",
3
  "activation_function": "gelu_new",
4
  "architectures": [
5
+ "PhiForCausalLM"
6
  ],
7
+ "attn_pdrop": 0.0,
8
  "auto_map": {
9
+ "AutoConfig": "configuration_phi.PhiConfig",
10
+ "AutoModelForCausalLM": "modeling_phi.PhiForCausalLM"
11
  },
12
  "embd_pdrop": 0.0,
13
+ "flash_attn": false,
14
+ "flash_rotary": false,
15
+ "fused_dense": false,
16
  "initializer_range": 0.02,
17
  "layer_norm_epsilon": 1e-05,
18
+ "model_type": "phi",
19
  "n_embd": 2048,
20
  "n_head": 32,
21
+ "n_head_kv": null,
22
  "n_inner": null,
23
  "n_layer": 24,
24
  "n_positions": 2048,
 
26
  "rotary_dim": 32,
27
  "tie_word_embeddings": false,
28
  "torch_dtype": "float16",
29
+ "transformers_version": "4.34.1",
30
  "vocab_size": 51200
31
  }
configuration_phi.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+
4
+ import math
5
+ from typing import Optional
6
+
7
+ from transformers import PretrainedConfig
8
+
9
+
10
+ class PhiConfig(PretrainedConfig):
11
+ """Phi configuration."""
12
+
13
+ model_type = "phi"
14
+ attribute_map = {
15
+ "max_position_embeddings": "n_positions",
16
+ "hidden_size": "n_embd",
17
+ "num_attention_heads": "n_head",
18
+ "num_hidden_layers": "n_layer",
19
+ }
20
+
21
+ def __init__(
22
+ self,
23
+ vocab_size: int = 50304,
24
+ n_positions: int = 2048,
25
+ n_embd: int = 1024,
26
+ n_layer: int = 20,
27
+ n_inner: Optional[int] = None,
28
+ n_head: int = 16,
29
+ n_head_kv: Optional[int] = None,
30
+ rotary_dim: Optional[int] = 32,
31
+ activation_function: Optional[str] = "gelu_new",
32
+ flash_attn: bool = False,
33
+ flash_rotary: bool = False,
34
+ fused_dense: bool = False,
35
+ attn_pdrop: float = 0.0,
36
+ embd_pdrop: float = 0.0,
37
+ resid_pdrop: float = 0.0,
38
+ layer_norm_epsilon: float = 1e-5,
39
+ initializer_range: float = 0.02,
40
+ tie_word_embeddings: bool = False,
41
+ pad_vocab_size_multiple: int = 64,
42
+ **kwargs
43
+ ) -> None:
44
+ self.vocab_size = int(math.ceil(vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
45
+ self.n_positions = n_positions
46
+ self.n_embd = n_embd
47
+ self.n_layer = n_layer
48
+ self.n_inner = n_inner
49
+ self.n_head = n_head
50
+ self.n_head_kv = n_head_kv
51
+ self.rotary_dim = min(rotary_dim, n_embd // n_head)
52
+ self.activation_function = activation_function
53
+ self.flash_attn = flash_attn
54
+ self.flash_rotary = flash_rotary
55
+ self.fused_dense = fused_dense
56
+ self.attn_pdrop = attn_pdrop
57
+ self.embd_pdrop = embd_pdrop
58
+ self.resid_pdrop = resid_pdrop
59
+ self.layer_norm_epsilon = layer_norm_epsilon
60
+ self.initializer_range = initializer_range
61
+
62
+ super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)
modeling_phi.py ADDED
@@ -0,0 +1,907 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Microsoft Corporation.
2
+ # Licensed under the MIT license.
3
+ #
4
+ # Copyright (c) 2022, Tri Dao, [email protected].
5
+ # Licensed under the BSD 3-Clause License.
6
+
7
+ from __future__ import annotations
8
+
9
+ import math
10
+ from dataclasses import dataclass, field
11
+ from typing import Any, Dict, Optional, Tuple, Union
12
+
13
+ import torch
14
+ import torch.nn as nn
15
+ from einops import rearrange, repeat
16
+ from transformers import PretrainedConfig, PreTrainedModel
17
+ from transformers.activations import ACT2FN
18
+ from transformers.modeling_outputs import CausalLMOutputWithPast
19
+
20
+ from .configuration_phi import PhiConfig
21
+
22
+ try:
23
+ from flash_attn.bert_padding import pad_input, unpad_input
24
+ from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
25
+ from flash_attn.modules.mha import FlashCrossAttention, FlashSelfAttention
26
+ from flash_attn.ops.fused_dense import FusedDense
27
+ except:
28
+ pad_input, unpad_input = None, None
29
+ FlashRotaryEmbedding = None
30
+ FlashSelfAttention, FlashCrossAttention = None, None
31
+ FusedDense = None
32
+
33
+
34
+ @dataclass
35
+ class InferenceParams:
36
+ """Inference parameters passed to model to efficiently calculate
37
+ and store context during inference.
38
+
39
+ Reference:
40
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/utils/generation.py.
41
+
42
+ Args:
43
+ max_seqlen: Maximum sequence length.
44
+ max_batch_size: Maximum batch size.
45
+ seqlen_offset: Sequence length offset.
46
+ batch_size_offset: Batch size offset.
47
+ key_value_memory_dict: Key value memory dictionary.
48
+ lengths_per_sample: Lengths per sample.
49
+
50
+ """
51
+
52
+ max_seqlen: int = field(metadata={"help": "Maximum sequence length."})
53
+
54
+ max_batch_size: int = field(metadata={"help": "Maximum batch size."})
55
+
56
+ seqlen_offset: int = field(default=0, metadata={"help": "Sequence length offset."})
57
+
58
+ batch_size_offset: int = field(default=0, metadata={"help": "Batch size offset."})
59
+
60
+ key_value_memory_dict: Dict[str, Any] = field(
61
+ default_factory=dict, metadata={"help": "Key value memory dictionary."}
62
+ )
63
+
64
+ lengths_per_sample: torch.Tensor = field(default=None, metadata={"help": "Lengths per sample."})
65
+
66
+
67
+ class Embedding(nn.Module):
68
+ """Token embedding with dropout."""
69
+
70
+ def __init__(self, config: PretrainedConfig) -> None:
71
+ super().__init__()
72
+
73
+ self.wte = nn.Embedding(config.vocab_size, config.n_embd)
74
+ self.drop = nn.Dropout(config.embd_pdrop)
75
+
76
+ def forward(self, input_ids: torch.LongTensor) -> torch.FloatTensor:
77
+ input_shape = input_ids.size()
78
+ input_ids = input_ids.view(-1, input_shape[-1])
79
+
80
+ hidden_states = self.wte(input_ids)
81
+ hidden_states = self.drop(hidden_states)
82
+
83
+ return hidden_states
84
+
85
+
86
+ def _apply_rotary_emb(
87
+ x: torch.FloatTensor,
88
+ cos: torch.FloatTensor,
89
+ sin: torch.FloatTensor,
90
+ ) -> torch.FloatTensor:
91
+ _, seqlen, _, _ = x.shape
92
+ _, rotary_dim = cos.shape
93
+ rotary_dim *= 2
94
+
95
+ x_rot = x[:, :, :, :rotary_dim]
96
+ x_pass = x[:, :, :, rotary_dim:]
97
+
98
+ x1, x2 = x_rot.chunk(2, dim=-1)
99
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
100
+ x1, x2, c, s = [t.to(dtype=torch.float32) for t in [x1, x2, c, s]]
101
+
102
+ x_rot = torch.cat([x1 * c - x2 * s, x1 * s + x2 * c], axis=-1).to(x.dtype)
103
+
104
+ return torch.cat([x_rot, x_pass], axis=-1)
105
+
106
+
107
+ def _apply_rotary_emb_kv(
108
+ kv: torch.FloatTensor,
109
+ cos: torch.FloatTensor,
110
+ sin: torch.FloatTensor,
111
+ cos_k: Optional[torch.FloatTensor] = None,
112
+ sin_k: Optional[torch.FloatTensor] = None,
113
+ ) -> torch.FloatTensor:
114
+ _, seqlen, _, _, _ = kv.shape
115
+ _, rotary_dim = cos.shape
116
+ rotary_dim *= 2
117
+
118
+ k_rot = kv[:, :, 0, :, :rotary_dim]
119
+ k_pass = kv[:, :, 0, :, rotary_dim:]
120
+
121
+ k1, k2 = k_rot.chunk(2, dim=-1)
122
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
123
+ k1, k2, c, s = [t.to(dtype=torch.float32) for t in [k1, k2, c, s]]
124
+
125
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(kv.dtype)
126
+
127
+ return torch.cat(
128
+ [
129
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
130
+ kv[:, :, 1:2, :, :],
131
+ ],
132
+ axis=2,
133
+ )
134
+
135
+
136
+ def _apply_rotary_emb_qkv(
137
+ qkv: torch.FloatTensor,
138
+ cos: torch.FloatTensor,
139
+ sin: torch.FloatTensor,
140
+ cos_k: Optional[torch.FloatTensor] = None,
141
+ sin_k: Optional[torch.FloatTensor] = None,
142
+ ) -> torch.FloatTensor:
143
+ _, seqlen, _, _, _ = qkv.shape
144
+ _, rotary_dim = cos.shape
145
+ rotary_dim *= 2
146
+
147
+ q_rot = qkv[:, :, 0, :, :rotary_dim]
148
+ q_pass = qkv[:, :, 0, :, rotary_dim:]
149
+
150
+ k_rot = qkv[:, :, 1, :, :rotary_dim]
151
+ k_pass = qkv[:, :, 1, :, rotary_dim:]
152
+
153
+ q1, q2 = q_rot.chunk(2, dim=-1)
154
+ k1, k2 = k_rot.chunk(2, dim=-1)
155
+ c, s = rearrange(cos[:seqlen], "s d -> s 1 d"), rearrange(sin[:seqlen], "s d -> s 1 d")
156
+ q1, q2, k1, k2, c, s = [t.to(dtype=torch.float32) for t in [q1, q2, k1, k2, c, s]]
157
+
158
+ q_rot = torch.cat([q1 * c - q2 * s, q1 * s + q2 * c], axis=-1).to(qkv.dtype)
159
+ k_rot = torch.cat([k1 * c - k2 * s, k1 * s + k2 * c], axis=-1).to(qkv.dtype)
160
+
161
+ return torch.cat(
162
+ [
163
+ torch.cat([q_rot, q_pass], axis=-1).unsqueeze(2),
164
+ torch.cat([k_rot, k_pass], axis=-1).unsqueeze(2),
165
+ qkv[:, :, 2:3, :, :],
166
+ ],
167
+ axis=2,
168
+ )
169
+
170
+
171
+ class RotaryEmbedding(nn.Module):
172
+ """Rotary positional embedding (RoPE).
173
+
174
+ Reference:
175
+ RoFormer: Enhanced Transformer with Rotary Position Embedding.
176
+ https://arxiv.org/pdf/2104.09864.pdf.
177
+
178
+ """
179
+
180
+ def __init__(
181
+ self,
182
+ dim: int,
183
+ base: int = 10000,
184
+ scale_base: Optional[float] = None,
185
+ pos_idx_in_fp32: bool = True,
186
+ max_position_embeddings: int = 2048,
187
+ device: Optional[str] = None,
188
+ **kwargs,
189
+ ) -> None:
190
+ super().__init__()
191
+
192
+ if scale_base is not None:
193
+ raise NotImplementedError
194
+
195
+ self.dim = dim
196
+ self.base = float(base)
197
+ self.scale_base = scale_base
198
+ self.pos_idx_in_fp32 = pos_idx_in_fp32
199
+ self.max_position_embeddings = max_position_embeddings
200
+ self.device = device
201
+
202
+ # Generate and save the inverse frequency buffer (non-trainable)
203
+ inv_freq = self._compute_inv_freq(device)
204
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
205
+
206
+ # Generate and save the scale buffer (non-trainable)
207
+ scale = (
208
+ (torch.arange(0, dim, 2, device=device, dtype=torch.float32) + 0.4 * dim) / (1.4 * dim)
209
+ if scale_base is not None
210
+ else None
211
+ )
212
+ self.register_buffer("scale", scale, persistent=False)
213
+
214
+ # Initialize cached attributes since ONNX can't rely on dynamic initialization
215
+ self._update_cos_sin_cache(max_position_embeddings, device=device, dtype=torch.float32)
216
+
217
+ def _compute_inv_freq(self, device: Optional[str] = None) -> torch.FloatTensor:
218
+ return 1.0 / (self.base ** (torch.arange(0, self.dim, 2, device=device, dtype=torch.float32) / self.dim))
219
+
220
+ def _update_cos_sin_cache(
221
+ self, seqlen: int, device: Optional[str] = None, dtype: Optional[torch.dtype] = None
222
+ ) -> None:
223
+ self._seq_len_cached = seqlen
224
+
225
+ # fp32 is preferred since the output of `torch.arange` can be quite large
226
+ # and bf16 would lose a lot of precision
227
+ if self.pos_idx_in_fp32:
228
+ t = torch.arange(seqlen, device=device, dtype=torch.float32)
229
+ if self.inv_freq.dtype != torch.float32:
230
+ inv_freq = self._compute_inv_freq(device=device)
231
+ else:
232
+ inv_freq = self.inv_freq
233
+ else:
234
+ t = torch.arange(seqlen, device=device, dtype=self.inv_freq.dtype)
235
+ inv_freq = self.inv_freq
236
+
237
+ # `torch.outer` is preferred since `torch.einsum` converts from fp32 to fp16 if used with AMP
238
+ freqs = torch.outer(t, inv_freq)
239
+ if self.scale is None:
240
+ self._cos_cached = torch.cos(freqs).to(dtype)
241
+ self._sin_cached = torch.sin(freqs).to(dtype)
242
+ else:
243
+ power = (
244
+ torch.arange(seqlen, dtype=self.scale.dtype, device=self.scale.device) - seqlen // 2
245
+ ) / self.scale_base
246
+ scale = self.scale.to(device=power.device) ** rearrange(power, "s -> s 1")
247
+
248
+ # Force the scale multiplication to happen in fp32
249
+ self._cos_cached = (torch.cos(freqs) * scale).to(dtype)
250
+ self._sin_cached = (torch.sin(freqs) * scale).to(dtype)
251
+ self._cos_k_cached = (torch.cos(freqs) / scale).to(dtype)
252
+ self._sin_k_cached = (torch.sin(freqs) / scale).to(dtype)
253
+
254
+ def forward(
255
+ self,
256
+ qkv: torch.Tensor,
257
+ kv: Optional[torch.Tensor] = None,
258
+ seqlen_offset: int = 0,
259
+ **kwargs,
260
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
261
+ seq_start = seqlen_offset
262
+ seq_end = seq_start + qkv.shape[1]
263
+
264
+ if self._cos_cached.device != qkv.device or self._cos_cached.dtype != qkv.dtype or (self.training and self._cos_cached.is_inference()):
265
+ self._update_cos_sin_cache(self.max_position_embeddings, device=qkv.device, dtype=qkv.dtype)
266
+
267
+ if kv is None:
268
+ return _apply_rotary_emb_qkv(qkv, self._cos_cached[seq_start:seq_end], self._sin_cached[seq_start:seq_end])
269
+ else:
270
+ q = _apply_rotary_emb(qkv, self._cos_cached[seq_start:seq_end], self._sin_cached[seq_start:seq_end])
271
+ kv = _apply_rotary_emb_kv(kv, self._cos_cached[seq_start:seq_end], self._sin_cached[seq_start:seq_end])
272
+
273
+ return q, kv
274
+
275
+
276
+ class MLP(nn.Module):
277
+ """Multi-Layer Perceptron.
278
+
279
+ Reference:
280
+ Attention Is All You Need.
281
+ https://arxiv.org/pdf/1706.03762.pdf.
282
+
283
+ """
284
+
285
+ def __init__(
286
+ self,
287
+ config: PretrainedConfig,
288
+ n_inner: Optional[int] = None,
289
+ act_fn: Optional[str] = None,
290
+ ) -> None:
291
+ super().__init__()
292
+
293
+ act_fn = config.activation_function if act_fn is None else act_fn
294
+
295
+ n_inner = getattr(config, "n_inner", None) if n_inner is None else n_inner
296
+ n_inner = n_inner if n_inner is not None else 4 * config.n_embd
297
+
298
+ self.fc1 = nn.Linear(config.n_embd, n_inner)
299
+ self.fc2 = nn.Linear(n_inner, config.n_embd)
300
+ self.act = ACT2FN[act_fn]
301
+
302
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
303
+ hidden_states = self.fc1(hidden_states)
304
+ hidden_states = self.act(hidden_states)
305
+ hidden_states = self.fc2(hidden_states)
306
+
307
+ return hidden_states
308
+
309
+
310
+ class SelfAttention(nn.Module):
311
+ """Self-attention layer (compatible with PyTorch).
312
+
313
+ Reference:
314
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
315
+
316
+ """
317
+
318
+ def __init__(
319
+ self,
320
+ causal: bool = True,
321
+ softmax_scale: Optional[float] = None,
322
+ attention_dropout: float = 0.0,
323
+ ) -> None:
324
+ super().__init__()
325
+
326
+ self.causal = causal
327
+ self.softmax_scale = softmax_scale
328
+ self.drop = nn.Dropout(attention_dropout)
329
+
330
+ def forward(
331
+ self,
332
+ qkv: torch.FloatTensor,
333
+ causal: bool = None,
334
+ key_padding_mask: Optional[torch.BoolTensor] = None,
335
+ **kwargs,
336
+ ) -> torch.FloatTensor:
337
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
338
+ q, k, v = qkv.unbind(dim=2)
339
+
340
+ causal = self.causal if causal is None else causal
341
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
342
+
343
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
344
+
345
+ if key_padding_mask is not None:
346
+ padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device)
347
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
348
+
349
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
350
+
351
+ if causal:
352
+ causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
353
+ scores = scores + causal_mask.to(dtype=scores.dtype)
354
+
355
+ attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
356
+ attention = self.drop(attention)
357
+
358
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
359
+
360
+ return output
361
+
362
+
363
+ class CrossAttention(nn.Module):
364
+ """Cross-attention layer (compatible with PyTorch).
365
+
366
+ Reference:
367
+ https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/modules/mha.py.
368
+
369
+ """
370
+
371
+ def __init__(
372
+ self,
373
+ causal: bool = True,
374
+ softmax_scale: Optional[float] = None,
375
+ attention_dropout: float = 0.0,
376
+ ) -> None:
377
+ super().__init__()
378
+
379
+ self.causal = causal
380
+ self.softmax_scale = softmax_scale
381
+ self.drop = nn.Dropout(attention_dropout)
382
+
383
+ def forward(
384
+ self,
385
+ q: torch.FloatTensor,
386
+ kv: torch.FloatTensor,
387
+ causal: bool = None,
388
+ key_padding_mask: Optional[torch.BoolTensor] = None,
389
+ **kwargs,
390
+ ) -> torch.FloatTensor:
391
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
392
+ seqlen_k = kv.shape[1]
393
+
394
+ if kv.shape[3] != q.shape[2]:
395
+ kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
396
+ k, v = kv.unbind(dim=2)
397
+
398
+ causal = self.causal if causal is None else causal
399
+ softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
400
+
401
+ scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
402
+
403
+ if key_padding_mask is not None:
404
+ padding_mask = torch.full(
405
+ (batch_size, seqlen_k),
406
+ -10000.0,
407
+ dtype=scores.dtype,
408
+ device=scores.device,
409
+ )
410
+ padding_mask.masked_fill_(key_padding_mask, 0.0)
411
+
412
+ scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
413
+
414
+ if causal:
415
+ rows = rearrange(torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1")
416
+ cols = torch.arange(seqlen_k, device=k.device, dtype=torch.long)
417
+ causal_mask = cols > rows + seqlen_k - seqlen_q
418
+
419
+ scores = scores.masked_fill(causal_mask, -10000.0)
420
+
421
+ attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
422
+ attention = self.drop(attention)
423
+
424
+ output = torch.einsum("bhts,bshd->bthd", attention, v)
425
+
426
+ return output
427
+
428
+
429
+ def _find_mha_dims(
430
+ config: PretrainedConfig,
431
+ n_head: Optional[int] = None,
432
+ n_head_kv: Optional[int] = None,
433
+ head_dim: Optional[int] = None,
434
+ ) -> Tuple[int, int]:
435
+ if n_head is None and head_dim is None:
436
+ head_dim = config.n_embd // config.n_head
437
+ n_head = config.n_head
438
+ elif n_head is None or head_dim is None:
439
+ raise ValueError("`n_head` and `head_dim` must be both specified or `None`.")
440
+
441
+ if n_head_kv is None:
442
+ n_head_kv = getattr(config, "n_head_kv", None) or n_head
443
+
444
+ return n_head, n_head_kv, head_dim
445
+
446
+
447
+ def _update_kv_cache(kv: torch.FloatTensor, inference_params: InferenceParams, layer_idx: int) -> torch.FloatTensor:
448
+ num_heads, head_dim = kv.shape[-2:]
449
+
450
+ if layer_idx not in inference_params.key_value_memory_dict:
451
+ kv_cache = torch.empty(
452
+ inference_params.max_batch_size,
453
+ inference_params.max_seqlen,
454
+ 2,
455
+ num_heads,
456
+ head_dim,
457
+ dtype=kv.dtype,
458
+ device=kv.device,
459
+ )
460
+ inference_params.key_value_memory_dict[layer_idx] = kv_cache
461
+ else:
462
+ kv_cache = inference_params.key_value_memory_dict[layer_idx]
463
+
464
+ batch_start = inference_params.batch_size_offset
465
+ batch_end = batch_start + kv.shape[0]
466
+
467
+ sequence_start = inference_params.seqlen_offset
468
+ sequence_end = sequence_start + kv.shape[1]
469
+
470
+ kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
471
+ kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
472
+
473
+ return kv
474
+
475
+
476
+ class MHA(nn.Module):
477
+ """Multi-head attention layer."""
478
+
479
+ def __init__(
480
+ self,
481
+ config: PretrainedConfig,
482
+ dtype: Optional[torch.dtype] = None,
483
+ device: Optional[str] = None,
484
+ rotary_dim: Optional[int] = None,
485
+ rotary_base: float = 10000.0,
486
+ rotary_scale_base: Optional[float] = None,
487
+ n_head: Optional[int] = None,
488
+ n_head_kv: Optional[int] = None,
489
+ head_dim: Optional[int] = None,
490
+ bias: bool = True,
491
+ causal: bool = True,
492
+ softmax_scale: Optional[float] = None,
493
+ layer_idx: Optional[int] = None,
494
+ return_residual: bool = False,
495
+ checkpointing: bool = False,
496
+ ) -> None:
497
+ super().__init__()
498
+
499
+ # Rotary embedding
500
+ self.rotary_dim = rotary_dim if rotary_dim is not None else getattr(config, "rotary_dim", 0)
501
+ if self.rotary_dim > 0:
502
+ rotary_cls = FlashRotaryEmbedding if config.flash_rotary else RotaryEmbedding
503
+ if rotary_cls is None:
504
+ rotary_cls = RotaryEmbedding
505
+
506
+ rotary_kwargs = {}
507
+ if rotary_cls is RotaryEmbedding:
508
+ rotary_kwargs["max_position_embeddings"] = config.n_positions
509
+
510
+ self.rotary_emb = rotary_cls(self.rotary_dim, base=rotary_base, scale_base=rotary_scale_base, device=device, **rotary_kwargs)
511
+
512
+ # MLP
513
+ self.n_head, self.n_head_kv, self.head_dim = _find_mha_dims(
514
+ config, n_head=n_head, n_head_kv=n_head_kv, head_dim=head_dim
515
+ )
516
+ op_size = self.head_dim * (self.n_head + 2 * self.n_head_kv)
517
+ hidden_size = config.n_embd
518
+
519
+ linear_cls = FusedDense if config.fused_dense else nn.Linear
520
+ if linear_cls is None:
521
+ linear_cls = nn.Linear
522
+
523
+ self.Wqkv = linear_cls(hidden_size, op_size, bias=bias, device=device, dtype=dtype)
524
+ self.out_proj = linear_cls(hidden_size, hidden_size, bias=bias, device=device, dtype=dtype)
525
+
526
+ # Attention
527
+ attn_cls = FlashSelfAttention if config.flash_attn else SelfAttention
528
+ if attn_cls is None:
529
+ attn_cls = SelfAttention
530
+
531
+ cross_attn_cls = FlashCrossAttention if config.flash_attn else CrossAttention
532
+ if cross_attn_cls is None:
533
+ cross_attn_cls = CrossAttention
534
+
535
+ self.inner_attn = attn_cls(causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop)
536
+ self.inner_cross_attn = cross_attn_cls(
537
+ causal=causal, softmax_scale=softmax_scale, attention_dropout=config.attn_pdrop
538
+ )
539
+
540
+ self.flash_attn = config.flash_attn and attn_cls is FlashSelfAttention
541
+ self.layer_idx = layer_idx
542
+ self.return_residual = return_residual
543
+ self.checkpointing = checkpointing
544
+
545
+ def _forward_self_attn(
546
+ self, x: torch.FloatTensor, key_padding_mask: Optional[torch.BoolTensor]
547
+ ) -> torch.FloatTensor:
548
+ qkv = self.Wqkv(x)
549
+ qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
550
+
551
+ if self.rotary_dim > 0:
552
+ qkv = self.rotary_emb(qkv)
553
+
554
+ if self.flash_attn:
555
+ batch_size, seqlen = qkv.shape[0], qkv.shape[1]
556
+
557
+ cu_seqlens, max_seqlen = None, None
558
+ if key_padding_mask is not None:
559
+ # If `key_padding_mask` is supplied, we need to unpad the input and retrieve
560
+ # the `cu_seqlens` and `max_seqlen` to be used by `flash-attn`
561
+ qkv, indices, cu_seqlens, max_seqlen = unpad_input(qkv, key_padding_mask)
562
+
563
+ if self.checkpointing:
564
+ attn_output = torch.utils.checkpoint.checkpoint(
565
+ self.inner_attn, qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen
566
+ )
567
+ else:
568
+ attn_output = self.inner_attn(qkv, cu_seqlens=cu_seqlens, max_seqlen=max_seqlen).to(qkv.device)
569
+
570
+ # If `key_padding_mask` is supplied, we need to pad the output back to the original shape
571
+ return pad_input(attn_output, indices, batch_size, seqlen) if key_padding_mask is not None else attn_output
572
+
573
+ if self.checkpointing:
574
+ return torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, key_padding_mask=key_padding_mask)
575
+
576
+ return self.inner_attn(qkv, key_padding_mask=key_padding_mask)
577
+
578
+ def _forward_cross_attn(
579
+ self,
580
+ x: torch.FloatTensor,
581
+ past_key_values: Optional[InferenceParams],
582
+ key_padding_mask: Optional[torch.BoolTensor],
583
+ ) -> torch.FloatTensor:
584
+ batch_size = x.shape[0]
585
+
586
+ qkv = self.Wqkv(x)
587
+
588
+ q = qkv[..., : self.n_head * self.head_dim]
589
+ q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
590
+
591
+ kv = qkv[..., self.n_head * self.head_dim :]
592
+ kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
593
+
594
+ seqlen_offset = past_key_values.seqlen_offset if past_key_values is not None else 0
595
+ causal = None if seqlen_offset == 0 else False
596
+ if self.rotary_dim > 0:
597
+ q, kv = self.rotary_emb(q, kv=kv, seqlen_offset=seqlen_offset)
598
+
599
+ if past_key_values is not None:
600
+ kv = _update_kv_cache(kv, past_key_values, self.layer_idx)
601
+
602
+ if self.flash_attn:
603
+ batch_size, seqlen_q = q.shape[0], q.shape[1]
604
+ seqlen_k = kv.shape[1]
605
+
606
+ cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k = None, None, None, None
607
+ if key_padding_mask is not None:
608
+ kv, _, cu_seqlens_k, max_seqlen_k = unpad_input(kv, key_padding_mask)
609
+
610
+ if seqlen_q == 1:
611
+ key_padding_mask = torch.ones(batch_size, 1, device=q.device)
612
+ elif seqlen_q != seqlen_k:
613
+ key_padding_mask = key_padding_mask[:, -seqlen_q:]
614
+
615
+ q, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, key_padding_mask)
616
+
617
+ if self.checkpointing:
618
+ attn_output = torch.utils.checkpoint.checkpoint(
619
+ self.inner_cross_attn,
620
+ q,
621
+ kv,
622
+ causal=causal,
623
+ cu_seqlens=cu_seqlens_q,
624
+ max_seqlen=max_seqlen_q,
625
+ cu_seqlens_k=cu_seqlens_k,
626
+ max_seqlen_k=max_seqlen_k,
627
+ )
628
+ else:
629
+ attn_output = self.inner_cross_attn(
630
+ q,
631
+ kv,
632
+ causal=causal,
633
+ cu_seqlens=cu_seqlens_q,
634
+ max_seqlen=max_seqlen_q,
635
+ cu_seqlens_k=cu_seqlens_k,
636
+ max_seqlen_k=max_seqlen_k,
637
+ )
638
+
639
+ return (
640
+ pad_input(attn_output, indices_q, batch_size, max_seqlen_q)
641
+ if key_padding_mask is not None
642
+ else attn_output
643
+ )
644
+
645
+ if self.checkpointing:
646
+ return torch.utils.checkpoint.checkpoint(
647
+ self.inner_cross_attn, q, kv, key_padding_mask=key_padding_mask, causal=causal
648
+ )
649
+
650
+ return self.inner_cross_attn(q, kv, key_padding_mask=key_padding_mask, causal=causal)
651
+
652
+ def forward(
653
+ self,
654
+ x: torch.FloatTensor,
655
+ past_key_values: Optional[InferenceParams] = None,
656
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
657
+ **kwargs,
658
+ ) -> Tuple[torch.FloatTensor, torch.FloatTensor]:
659
+ # TODO: Need an alternative way for dynamic control flow: torch.any(~attention_mask.bool())
660
+ if attention_mask is not None:
661
+ attention_mask = attention_mask.bool()
662
+ else:
663
+ attention_mask = None
664
+
665
+ # MHA
666
+ if self.n_head == self.n_head_kv:
667
+ if past_key_values is None:
668
+ # If `past_key_values` are not supplied, we run self-attention
669
+ attn_output = self._forward_self_attn(x, attention_mask)
670
+ else:
671
+ # If `past_key_values` are supplied, it means that we might have cached values and
672
+ # could take advantage of cross-attention
673
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
674
+ # MQA / GQA
675
+ else:
676
+ # Regardless of `past_key_values` being supplied or not, it always use cross-attention
677
+ # because `q` and `kv` lengths might be different
678
+ attn_output = self._forward_cross_attn(x, past_key_values, attention_mask)
679
+
680
+ output = rearrange(attn_output, "... h d -> ... (h d)")
681
+ output = self.out_proj(output)
682
+
683
+ return output if not self.return_residual else (output, x)
684
+
685
+
686
+ class ParallelBlock(nn.Module):
687
+ """Parallel block.
688
+
689
+ This block applies parallel mixer and MLP layers to the input (used in GPT-J and CodeGen).
690
+
691
+ """
692
+
693
+ def __init__(
694
+ self,
695
+ config: PretrainedConfig,
696
+ block_idx: Optional[int] = None,
697
+ ) -> None:
698
+ super().__init__()
699
+
700
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
701
+ self.resid_dropout = nn.Dropout(config.resid_pdrop)
702
+ self.block_idx = block_idx
703
+
704
+ self.mixer = MHA(config, layer_idx=block_idx)
705
+ self.mlp = MLP(config)
706
+
707
+ def forward(
708
+ self,
709
+ hidden_states: torch.FloatTensor,
710
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
711
+ attention_mask: Optional[torch.BoolTensor] = None,
712
+ **kwargs,
713
+ ) -> torch.FloatTensor:
714
+ residual = hidden_states
715
+ hidden_states = self.ln(hidden_states)
716
+
717
+ attn_outputs = self.mixer(
718
+ hidden_states,
719
+ past_key_values=past_key_values,
720
+ attention_mask=attention_mask,
721
+ )
722
+ if isinstance(attn_outputs, tuple):
723
+ attn_outputs = attn_outputs[0]
724
+
725
+ attn_outputs = self.resid_dropout(attn_outputs)
726
+ feed_forward_hidden_states = self.resid_dropout(self.mlp(hidden_states))
727
+
728
+ hidden_states = attn_outputs + feed_forward_hidden_states + residual
729
+
730
+ return hidden_states
731
+
732
+
733
+ class CausalLMHead(nn.Module):
734
+ """Causal Language Modeling head.
735
+
736
+ Reference:
737
+ Improving Language Understanding by Generative Pre-Training.
738
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
739
+
740
+ """
741
+
742
+ def __init__(self, config: PretrainedConfig) -> None:
743
+ super().__init__()
744
+
745
+ self.ln = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)
746
+ self.linear = nn.Linear(config.n_embd, config.vocab_size)
747
+
748
+ def forward(self, hidden_states: torch.FloatTensor) -> torch.FloatTensor:
749
+ hidden_states = self.ln(hidden_states)
750
+ logits = self.linear(hidden_states).to(torch.float32)
751
+
752
+ return logits
753
+
754
+
755
+ class CausalLMLoss(nn.Module):
756
+ """Causal Language Modeling loss.
757
+
758
+ Reference:
759
+ Improving Language Understanding by Generative Pre-Training.
760
+ https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf.
761
+
762
+ """
763
+
764
+ def __init__(self, shift_labels: bool = True) -> None:
765
+ super().__init__()
766
+
767
+ self.shift_labels = shift_labels
768
+ self.loss_fct = nn.CrossEntropyLoss()
769
+
770
+ def forward(self, logits: torch.FloatTensor, labels: torch.LongTensor) -> torch.FloatTensor:
771
+ if self.shift_labels:
772
+ logits = logits[..., :-1, :].contiguous()
773
+ labels = labels[..., 1:].contiguous()
774
+
775
+ loss = self.loss_fct(logits.view(-1, logits.size(-1)), labels.view(-1))
776
+
777
+ return loss
778
+
779
+
780
+ class PhiPreTrainedModel(PreTrainedModel):
781
+ """Phi pre-trained model."""
782
+
783
+ config_class = PhiConfig
784
+ base_model_prefix = "transformer"
785
+ supports_gradient_checkpointing = False
786
+ _no_split_modules = ["ParallelBlock"]
787
+
788
+ def __init__(self, *inputs, **kwargs) -> None:
789
+ super().__init__(*inputs, **kwargs)
790
+
791
+ def _init_weights(self, module: nn.Module) -> None:
792
+ if isinstance(module, (nn.Linear,)):
793
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
794
+ if module.bias is not None:
795
+ module.bias.data.zero_()
796
+ elif isinstance(module, nn.Embedding):
797
+ module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
798
+ if module.padding_idx is not None:
799
+ module.weight.data[module.padding_idx].zero_()
800
+ elif isinstance(module, nn.LayerNorm):
801
+ if module.bias is not None:
802
+ module.bias.data.zero_()
803
+ module.weight.data.fill_(1.0)
804
+
805
+ def prepare_inputs_for_generation(
806
+ self,
807
+ input_ids: torch.LongTensor,
808
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
809
+ attention_mask: Optional[Union[torch.LongTensor, torch.BoolTensor]] = None,
810
+ **kwargs,
811
+ ) -> Dict[str, Any]:
812
+ if past_key_values is None or not (isinstance(past_key_values, InferenceParams)):
813
+ past_key_values = InferenceParams(
814
+ max_seqlen=self.config.n_positions,
815
+ max_batch_size=input_ids.shape[0],
816
+ seqlen_offset=0,
817
+ batch_size_offset=0,
818
+ key_value_memory_dict={},
819
+ lengths_per_sample=None,
820
+ )
821
+ else:
822
+ # Assume that `past_key_values` has cached all tokens up to the last token in `input_ids`
823
+ past_key_values.seqlen_offset = len(input_ids[0]) - 1
824
+ input_ids = input_ids[:, -1].unsqueeze(-1)
825
+
826
+ return {
827
+ "input_ids": input_ids,
828
+ "past_key_values": past_key_values,
829
+ "attention_mask": attention_mask,
830
+ }
831
+
832
+
833
+ class PhiModel(PhiPreTrainedModel):
834
+ """Phi model."""
835
+
836
+ _keys_to_ignore_on_load_missing = [""]
837
+ _keys_to_ignore_on_load_unexpected = [r"h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
838
+
839
+ def __init__(self, config: PhiConfig) -> None:
840
+ super().__init__(config)
841
+
842
+ self.embd = Embedding(config)
843
+ self.h = nn.ModuleList([ParallelBlock(config, block_idx=i) for i in range(config.n_layer)])
844
+ self.gradient_checkpointing = False
845
+ self.post_init()
846
+
847
+ def get_input_embeddings(self) -> nn.Embedding:
848
+ return self.embd.wte
849
+
850
+ def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
851
+ self.embd.wte = new_embeddings
852
+
853
+ def forward(
854
+ self,
855
+ input_ids: torch.LongTensor,
856
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
857
+ attention_mask: Optional[torch.BoolTensor] = None,
858
+ ) -> torch.FloatTensor:
859
+ hidden_states = self.embd(input_ids)
860
+
861
+ for layer in self.h:
862
+ hidden_states = layer(
863
+ hidden_states,
864
+ past_key_values=past_key_values,
865
+ attention_mask=attention_mask,
866
+ )
867
+
868
+ return hidden_states
869
+
870
+
871
+ class PhiForCausalLM(PhiPreTrainedModel):
872
+ """Phi for Causal Language Modeling."""
873
+
874
+ _keys_to_ignore_on_load_missing = [""]
875
+ _keys_to_ignore_on_load_unexpected = [r"transformer\.h\.\d+\.mlp.(fc_in|fc_out)\.(weight|bias)"]
876
+
877
+ def __init__(self, config: PhiConfig) -> None:
878
+ super().__init__(config)
879
+
880
+ self.transformer = PhiModel(config)
881
+ self.lm_head = CausalLMHead(config)
882
+ self.loss = CausalLMLoss()
883
+
884
+ self.post_init()
885
+
886
+ def get_output_embeddings(self) -> nn.Linear:
887
+ return self.lm_head.linear
888
+
889
+ def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
890
+ self.lm_head.linear = new_embeddings
891
+
892
+ def forward(
893
+ self,
894
+ input_ids: torch.LongTensor,
895
+ past_key_values: Optional[Union[torch.FloatTensor, InferenceParams]] = None,
896
+ attention_mask: Optional[torch.BoolTensor] = None,
897
+ labels: Optional[torch.LongTensor] = None,
898
+ **kwargs,
899
+ ) -> CausalLMOutputWithPast:
900
+ hidden_states = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask)
901
+ lm_logits = self.lm_head(hidden_states)
902
+
903
+ loss = None
904
+ if labels is not None:
905
+ loss = self.loss(lm_logits, labels)
906
+
907
+ return CausalLMOutputWithPast(loss=loss, logits=lm_logits, past_key_values=past_key_values)
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0129d584cecaac3db8d15519e6b8542ccd97a9107bc3d38c9308a484500e5ffc
3
- size 2836623617
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e5cbf1ddf999b35f41a2a25ec4b4402e5f858702537c85b884705a810628c5ef
3
+ size 5673163926