File size: 6,812 Bytes
f20b421
 
f11ff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f20b421
 
 
 
 
 
 
 
8744db0
f20b421
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f11ff0a
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
---
license: llama3
model-index:
- name: Llama-3-70B-Synthia-v3.5
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 60.76
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 49.12
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 18.96
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 18.34
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 23.39
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 40.65
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=migtissera/Llama-3-70B-Synthia-v3.5
      name: Open LLM Leaderboard
---


# Llama-3-70B-Synthia-v3.5
Llama-3-70B-Synthia-v3.5 (Synthetic Intelligent Agent) is a general purpose Large Language Model (LLM). It was trained on the Synthia-v3.5 dataset that contains the varied system contexts, plus some other publicly available datasets.

It has been fine-tuned for instruction following as well as having long-form conversations.

Compute for Llama-3-70B-Synthia-v3.5 was sponsored by [KindoAI](https://kindo.ai/).

<br>

![Synthia](https://huggingface.co/migtissera/Llama-3-8B-Synthia-v3.5/resolve/main/Synthia-3.5.jpg)

<br>




## Evaluation

We evaluated Llama-3-70B-Synthia-v3.5 on a wide range of tasks using [Language Model Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness) from EleutherAI. 

Here are the results on metrics used by [HuggingFaceH4 Open LLM Leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard). Section to follow.

||||
|:------:|:--------:|:-------:|
|**Task**|**Metric**|**Value**|
|*arc_challenge*|acc_norm||
|*hellaswag*|acc_norm||
|*mmlu*|acc_norm||
|*truthfulqa_mc*|mc2||
|**Total Average**|-|||

<br>


# Sample code to run inference

```python
import torch, json
from transformers import AutoModelForCausalLM, AutoTokenizer

model_path = "/home/migel/Llama-3-70B-Synthia-v3.5"
output_file_path = "/home/migel/conversations.jsonl"

model = AutoModelForCausalLM.from_pretrained(
    model_path,
    torch_dtype=torch.float16,
    device_map="auto",
    load_in_4bit=False,
    trust_remote_code=False,
)

tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)

def generate_text(instruction):
    tokens = tokenizer.encode(instruction)
    tokens = torch.LongTensor(tokens).unsqueeze(0)
    tokens = tokens.to("cuda")

    instance = {
        "input_ids": tokens,
        "top_p": 1.0,
        "temperature": 0.75,
        "generate_len": 1024,
        "top_k": 50,
    }

    length = len(tokens[0])
    with torch.no_grad():
        rest = model.generate(
            input_ids=tokens,
            max_length=length + instance["generate_len"],
            use_cache=True,
            do_sample=True,
            top_p=instance["top_p"],
            temperature=instance["temperature"],
            top_k=instance["top_k"],
            num_return_sequences=1,
            pad_token_id=tokenizer.eos_token_id,
        )
    output = rest[0][length:]
    string = tokenizer.decode(output, skip_special_tokens=True)
    return f"{string}"

conversation = """<|begin_of_text|><|start_header_id|>system<|end_header_id|>\n\nYou are Synthia, a helful, female AI assitant. You always provide detailed answers without hesitation.<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"""

while True:
    user_input = input("You: ")
    llm_prompt = f"{conversation}{user_input}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n"
    answer = generate_text(llm_prompt)
    print(answer)

    conversation = f"{llm_prompt}{answer}<|eot_id|><|start_header_id|>user<|end_header_id|>\n\n"

    json_data = {"prompt": user_input, "answer": answer}

    with open(output_file_path, "a") as output_file:
        output_file.write(json.dumps(json_data) + "\n")
```

# Join My General AI Discord (NeuroLattice):
https://discord.gg/Hz6GrwGFKD

# Limitations & Biases:

While this model aims for accuracy, it can occasionally produce inaccurate or misleading results. 

Despite diligent efforts in refining the pretraining data, there remains a possibility for the generation of inappropriate, biased, or offensive content. 

Exercise caution and cross-check information when necessary. This is an uncensored model.
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_migtissera__Llama-3-70B-Synthia-v3.5)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |35.20|
|IFEval (0-Shot)    |60.76|
|BBH (3-Shot)       |49.12|
|MATH Lvl 5 (4-Shot)|18.96|
|GPQA (0-shot)      |18.34|
|MuSR (0-shot)      |23.39|
|MMLU-PRO (5-shot)  |40.65|