mikeluck commited on
Commit
2bf944e
·
1 Parent(s): 677f113

Upload PPO LunarLander-v2 trained agent

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 164.86 +/- 70.94
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7b752d5963b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b752d596440>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b752d5964d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b752d596560>", "_build": "<function ActorCriticPolicy._build at 0x7b752d5965f0>", "forward": "<function ActorCriticPolicy.forward at 0x7b752d596680>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b752d596710>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b752d5967a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7b752d596830>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b752d5968c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b752d596950>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b752d5969e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7b75349d3000>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1024000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1701015427926273875, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV9QwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaADAAAAAAAAHM+b75k0QI/byCWPFrsYr7dLoE7PiKVvQAAAAAAAAAApgqtPQSPwj5VkJ68akWYvslWW756YlQ9AAAAAAAAAACNT5U9j9YPuvSUhznT/u412ZLwOQ32n7gAAIA/AACAP6Jvsr44TVQ/zIsDv44Dt76clKu+KeuLvgAAAAAAAAAAJhtYPmmnFLy1deY8vcYuvU4Xhb2Q3W88AAAAAAAAAADy7qm+PL1JPdaOn76qs7u++cO4vhpznb4AAAAAAAAAAFp6jj4BDOO8f7yAO5UhpLtl4FK+yy8OPQAAgD8AAAAAJkK5PfbECLoECYk5NVIwtoyPzTpyWiW1AACAPwAAgD9m8xU9Qwq8PxfhBj87LZQ+tm7xvAdtqL0AAAAAAAAAAFrX3D2bgv49f6FJPnUm1r1DeWk9yjUBPgAAAAAAAAAA86yrvUirq7rSdlu7UcGaNTYwnzooswq1AACAPwAAgD8Dm1E/1CJ9viBS0LyDk908nWBLPfAM6TwAAAAAAAAAAM2/uL170pG6yD0/u4tjbDhWBzA6bffKOQAAgD8AAIA/Fr+nPpRxBD81w+Q8ptDDvo3kl70gEMq9AAAAAAAAAAADN7++TrRWP8K4D75ANOW+6PCuvlo1Fz4AAAAAAAAAAE2kKb6up/C6RtAevKpepbgP4qM73ruUOQAAgD8AAIA/M9dvPXE1BzpH/aA7NO8rPDi/2zuG4RC9AAAAAAAAgD8ajVw9hSuJuYtGZjoKc264NEMvu5L6hLkAAIA/AACAPzNk67z2KA66+sCPu7HYFLnDvxk76jGIOAAAgD8AAIA/fZyzPiuW2T0O53q9XFcOvtxx1T6Dt8C+AAAAAAAAgD+midW+Ub9zvXozjL2hFwS8yUw2Ppz3RLsAAIA/AACAP+p8G7/pAA09xHwWva1vgLyw+OI9TpnpPAAAAAAAAAAADXddPmTZCL09bPI9wbAXPJ2cbb6AQt48AACAPwAAgD8eAr2+yiIfvTWDXDuMbIc51RW8PRYbrLoAAIA/AACAPxaWm7705ye9rr1UvIP4H7vkC40+pQQONgAAgD8AAIA/ir2ovi0XOL2yw186ZqV2NbURbj5u9PI3AACAPwAAgD8Tszk++IeIPF8SATwEMAy9KZkTPhZnDb4AAAAAAACAP2ZFBD2t3rw/n6DMPgs/iD459Vi8OhwlvAAAAAAAAAAAM+V/vYV757kK7gy86hkPNTpHKDuqKHm0AACAPwAAgD+zd709PdoKueIz5L0Cd3U1JxFKOs0c6LQAAAAAAACAP41Fjj5o7ak+p5a0uX9WhL5KwRg+Y6YoPgAAAAAAAAAA0yQpvnGEYbtTIe632kSiOGLOejxQr+42AACAPwAAgD/NBu882RrsPkLfB72plZe+AAZOvsIMjL0AAAAAAAAAAFWn5L5cjwq8U4WTug8iGjjQ2PO9YEHruAAAgD8AAIA/up+OPtssv7wTpRq7Pdp2ObENKL5yID86AACAPwAAgD8AWhw+bI03P3S/Jz7Ghwu/iyohPpNlCD4AAAAAAAAAAHB1qz5YTJO9K2q2utxNEDdj0Lu+2mtlNwAAAAAAAIA/3aMRP+w10r0ykTo9xYbWuinUwjwbC7u8AACAPwAAgD/WiEg/bclsvp2xfzr33oi40EHSvTJdlrkAAIA/AACAPyhhnb4Kdwg6fO0nvRHx3TwPHgq8FMG8vQAAgD8AAIA/s1ChPVxzerql0D+8yuVmNceSQbkKnc20AACAPwAAgD/N7Kw6ZruMP24aDr2mGM6+XI6XPQnCEb0AAAAAAAAAAG3pDj4L7jE/RRguvm6DW74QZEq+MVoKvAAAAAAAAAAAqlL5PnbaOz0yDAs+VOc9PWuDqT6m4IQ7AACAPwAAAAAayz8+sXgFPILJyrzpQq26RIqMPStIobsAAIA/AACAPzCqFT+4Jxa+dUrIPXuCgLwPilC+IA29vAAAgD8AAIA/2q7VPauajj81Umg+/rr3vsqAOj4JgK89AAAAAAAAAAAz3HY+RHcNPwruVr6TJrK+vl04PZFki74AAAAAAAAAAMBJ2b0X6KY/1GcFvx5I2L4NgcK8xlwQvgAAAAAAAAAAcxfTvcMRb7oouhO7yzqStidhybqIZQQ2AACAPwAAgD/qDDU/h9uWvrMqoLxDKaA6d6fDvVcmmTUAAIA/AACAP9pG4r0uApo+yP35u9l0AL4cy868Njy6PQAAAAAAAAAAaMEUv7HvBjynEoG7d+HPuSU5DT6AHMg5AACAPwAAgD9mXD2+sfYFPKVEE7tr3AM5FAaVvR0T67kAAIA/AACAP80SvL3hgJe6Vpf9O9BAFzeW4dK6Rm0NNgAAgD8AAIA/zUcdvcPFVLqkl7i41fsCNsWwnjulo9M3AACAPwAAgD9zwY29I3k0PeJQb76GdH6+h0kmvjtxGr4AAAAAAAAAABqh3z0pmDm6lVB1uwa7dLt6K1u7zqyNOwAAgD8AAIA/M3+bvdejU7mijMO71PYAOM7BpbtSCZQ6AACAPwAAgD9aQ/K9SAmKuusHUDyEncQ8tycTO39+RjwAAIA/AACAP83Qmb1I1ai6MCm0OwyevLaV3uc6Fr+rtQAAgD8AAIA/M30dvhR8jrqG/0I98yIfPcVLYrotTwa+AACAPwAAgD+Dybk+0JaCvfYJjjp+y4S3BTZkvuqnMzcAAIA/AACAPzMRqb2Pghu4S/t4u00jYLYmO7Q6sXOTOgAAgD8AAIA/MzESPVz7cLqa+QW6ktQEOesdQbrdWw05AACAPwAAgD/z3p294SSQuhdrhbv6H4E4WXGyuRqSjTkAAIA/AACAPzMfyL32WFC6HXs4u2Z5LDWI4He7NvZTOgAAgD8AAIA/jc6RPp88gD/qMIg+HDr3vrSwVj7SvQU9AAAAAAAAAACKN1+/8ph9vnenxLzpJpI7PHCTvoj8Bb4AAIA/AACAP22Xuz7tuFS9ajzyOlbkcrnacUS+yZQYugAAgD8AAIA/hgUAPsMFazl4h3k8kLuzvOhCVLvW65c9AACAPwAAAACgu7E+nQJFP2P+Pj76h6e+SnlBvcpvib0AAAAAAAAAAID6Ab1x7Uy5skhwO4t3nzZJ4z+7qwCMugAAgD8AAIA/TfQzPUiTiro174672z7LvFq5JDp747G9AAAAAAAAgD+am9g9XB9EupNtz7rF8He89g83O+KKWb0AAAAAAACAPwXRz764gpa9CUisvPNLpjsMQrQ9d5G8PAAAgD8AAAAAleK5vuNoSD29bmg9UVqzuzEWLr7ceBy8AACAPwAAgD/GqI0+nGUqvB6oYrjx6ow2oSmbvX5ohTcAAIA/AACAP4Ak1r2Pjjy66hlgvFz1xrYeed46ce4xNgAAgD8AAIA/gFNQPY9SabqLLUY8reJyNj8RCzsKL181AACAPwAAgD8zuzk8j14/ur4ePDyvv202W5a0O1q3ZDUAAIA/AACAP4Bltb2hKuY9DdNDPi8VQb5OUJc7JljJPAAAAAAAAAAARvyBPgFOhrw+HMo5D/doOFpQ+L2zfQK5AACAPwAAgD/NXmw94UrIOTKXETu2y028SI0Cu0ejDj0AAAAAAAAAADMvDzz2KBS2CHLivLf9ILlcqiC7Hd6VOAAAgD8AAIA/AKt0PWm8Grxu64S8J3+PPJVxjb0aRG49AACAPwAAgD8zsTo9KXgmumG7RLtVfaozJoqnOoVgYDoAAIA/AACAP5Wr1b7iafA+AwepvKqH476t+8u+CmwDvQAAAAAAAAAAe8nIviLwm72oiU+8X0cIusAFFD4oKTK8AACAPwAAgD+7yf6+JFQ6vV5vwbtJfUE5OTuDvQWDmjgAAIA/AACAPzOv7rz2mDS68h58OzU3xbbzC7m7IPGRugAAgD8AAIA/w8fyPoba/D7Y3Bc8bBEWvoMpDj5f5hK9AAAAAAAAAACGwpc+/LeUP9oksD43wJW+w8GkPs7fMT4AAAAAAAAAAECW5j0pmDm6sJtwvLy+rLZJxY65NoUaNgAAAAAAAIA/UFXjPjHdb716DmU9UYsjvI47pb7THry8AACAPwAAgD8zbYs8hcu7uW1TWDq8D001zoMZO2LNebkAAIA/AACAP3NWwT3DKTy6nQnOOz1qnziV1Ba5TZq5uAAAgD8AAIA/E6+rPojYmr1LVc228kewtiuBxL6AMpizAACAPwAAgD9NgEu9hWO0uek8proaBBe2eNdGOwuniTUAAIA/AACAP7bZ0j5ISbO6LGSxOt0/A7h85E+9svFKuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktkSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV1wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS2SFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.02400000000000002, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIkQ5/9YOmMAWyUTegDjAF0lEdAlbpsByS3b3V9lChoBkdAZOlmGM4tH2gHTegDaAhHQJW7M8U21lZ1fZQoaAZHQF6zuPFNtZVoB03oA2gIR0CVveDxb0OFdX2UKGgGR0BbVYjKPn0TaAdN6ANoCEdAlcC/7SApa3V9lChoBkdAXoA75mAbymgHTegDaAhHQJXJiy4Wk8B1fZQoaAZHQGBZwF9roGJoB03oA2gIR0CVzX4QjD8+dX2UKGgGR0BUbVMmF8G+aAdN6ANoCEdAldNP8hs673V9lChoBkdAZdvfQa72+WgHTegDaAhHQJXTesny/bl1fZQoaAZHQF7K0pEx7AtoB03oA2gIR0CV1gtnwob5dX2UKGgGR0Be2arzXjEOaAdN6ANoCEdAldc8FUyYX3V9lChoBkdAWefueBg/kmgHTegDaAhHQJXYL6tT1kF1fZQoaAZHQBmJQHiWE9NoB00EAWgIR0CV2ldEsrd4dX2UKGgGR0BeVgFs54nnaAdN6ANoCEdAldxXlXA/LXV9lChoBkdAY5NQQ+UyHmgHTegDaAhHQJXeR1dPci51fZQoaAZHwAAJ35eqrBFoB0vMaAhHQJXeTgIhQnB1fZQoaAZHQGTdhUJfICFoB03oA2gIR0CV315kbxVidX2UKGgGR0BgM3DNyHVPaAdN6ANoCEdAleM54B3iaXV9lChoBkdAYKw9vjwQUmgHTegDaAhHQJXlb4qPOpt1fZQoaAZHQDPRWcSXdCVoB0vVaAhHQJXttUR3/xV1fZQoaAZHQDpeoVEd/8VoB0vRaAhHQJXvkp2ECeV1fZQoaAZHQELnzK9wm3RoB0u3aAhHQJXykwudwvR1fZQoaAZHQGBFeOfdyktoB03oA2gIR0CV8utPpIMCdX2UKGgGR0AYMfHPu5SWaAdLsmgIR0CV9u0TDfm+dX2UKGgGR0A8X+2E0zj4aAdLx2gIR0CV+QXHim2tdX2UKGgGR0BhaWYSg5BDaAdN6ANoCEdAlfxuDjBEa3V9lChoBkdAY8Q0tyxRmGgHTegDaAhHQJYAU9gWrOt1fZQoaAZHQGbJlbmlqJxoB03oA2gIR0CWAkz2OAAidX2UKGgGR0BQ8MuzyBkJaAdN6ANoCEdAlgKkNSZSenV9lChoBkdAQ3tVea8Yh2gHTegDaAhHQJYGgKE384x1fZQoaAZHQGHuu89Oh01oB03oA2gIR0CWDFO6/ZdwdX2UKGgGR0BhqWoP07KaaAdN6ANoCEdAlgzpoGpuM3V9lChoBkdASljPt2LYPGgHS5toCEdAlg3QarFOwnV9lChoBkdAAIrOJLuhK2gHS9toCEdAlhU5yp71I3V9lChoBkdAYXOAJ9iMHmgHTegDaAhHQJYaqjfvWpZ1fZQoaAZHwCzuq5sj3VVoB0uxaAhHQJYl4azeGfx1fZQoaAZHQFleez2OAAhoB03oA2gIR0CWKpqv/zasdX2UKGgGR8BU9by+Yc//aAdNowFoCEdAlix+VopQUHV9lChoBkdAIiy1Vo6CDmgHS7loCEdAljKp4rz5GnV9lChoBkdARIFbmlqJuWgHS/BoCEdAljfNZFG5MHV9lChoBkdAYXsdI5HVgGgHTegDaAhHQJY9cAAAAAB1fZQoaAZHQFfR28qWkadoB03oA2gIR0CWQFId2gWadX2UKGgGR0BZMbhR64UfaAdN6ANoCEdAlkC7dadMCnV9lChoBkdAXEB9Wp6yB2gHTegDaAhHQJZBe6nR9gF1fZQoaAZHQFX7PX05EMNoB03oA2gIR0CWQd4IrvsrdX2UKGgGR0AWInRb8m8eaAdL6mgIR0CWQ+PCEYfodX2UKGgGR0BT0Gg8KXv6aAdN6ANoCEdAlkcU+s5n13V9lChoBkdAYhTIy0rsjWgHTegDaAhHQJZIqXTmW+p1fZQoaAZHQGCUsoDxLChoB03oA2gIR0CWT3fOUt7KdX2UKGgGR0BdZ/kRzzVdaAdN6ANoCEdAllIU+s5n13V9lChoBkdAUbvtF8XvY2gHS6ZoCEdAllZeYUnG83V9lChoBkdAMJHndO6/ZmgHS7ZoCEdAllfnvYvnKXV9lChoBkdAKkSc9W6shmgHS+xoCEdAllkKClJpWXV9lChoBkdACTekYXO4X2gHS8VoCEdAllqlPFefI3V9lChoBkdAVaPTXrdFfGgHTegDaAhHQJZcTlPrOZ91fZQoaAZHQGG8aS1Vo6FoB03oA2gIR0CWYCeuFHrhdX2UKGgGR0BatHgHeJpGaAdN6ANoCEdAlmfxqfvnbXV9lChoBkc/sU+cH4XXRWgHS81oCEdAlmlwTufEoHV9lChoBkdAXjwdOqNp/WgHTegDaAhHQJZrXzWf9P11fZQoaAZHQGffat1ZDAtoB00YAmgIR0CWbcJ/G2kSdX2UKGgGR0BhciagElmfaAdN6ANoCEdAlnfFpCa7VnV9lChoBkdAYRxwrDqGDmgHTegDaAhHQJZ8M1rIo3J1fZQoaAZHQGcLEsasIVxoB03oA2gIR0CWfvH1e0HAdX2UKGgGR0Bhcln9NvfkaAdN6ANoCEdAloKVpj+aSnV9lChoBkdAXZRvAGjbjGgHTegDaAhHQJaDYO8TSLJ1fZQoaAZHwCPJuEVWS2ZoB0vFaAhHQJaIBkjHGS91fZQoaAZHQGI/A3DNyHVoB03oA2gIR0CWikqT8pCsdX2UKGgGR0BlBLyMDOkdaAdN6ANoCEdAlo5cvh60IHV9lChoBkdATrs8TzundmgHS75oCEdAlpSGlMyrP3V9lChoBkdAZdpwYLsru2gHTegDaAhHQJacXv2GqPx1fZQoaAZHQEMzoFmnO0NoB0u1aAhHQJaiEHKOktV1fZQoaAZHQGAeN0FKTStoB03oA2gIR0CWptiyIHkcdX2UKGgGR0A/WMGorFwUaAdLq2gIR0CWqlus90RwdX2UKGgGR7/KCo0hvBJqaAdLxWgIR0CWrTXWvr4WdX2UKGgGR0Bh6lLeyiVTaAdN6ANoCEdAlq7sbaRISXV9lChoBkdAXXPT/hl182gHTegDaAhHQJa2d/ZuhsZ1fZQoaAZHQE1SsnRb8m9oB0uoaAhHQJa5GXJHRTl1fZQoaAZHQFdh8aXKKYRoB03oA2gIR0CWu4lDWsijdX2UKGgGR0BkcJid8RcvaAdN6ANoCEdAlsBqpPykK3V9lChoBkdAUMPnRsuWbGgHTegDaAhHQJbA3oPkJa91fZQoaAZHQFpms0YTCchoB03oA2gIR0CWwfybhFVldX2UKGgGR0BhJHNC7btaaAdN6ANoCEdAlsZL127nPnV9lChoBkdANTlrIo3JgmgHTegDaAhHQJbK9EhJRO11fZQoaAZHQGBWWrGR3eNoB03oA2gIR0CWzEl5GBnSdX2UKGgGR0BbsWUfPompaAdN6ANoCEdAls5QWnCO3nV9lChoBkdAW+nqHGjsU2gHTegDaAhHQJbRyKQ7tAt1fZQoaAZHQFPGB5X2dupoB03oA2gIR0CW2PIg/1QJdX2UKGgGR8BAoF6iTMaCaAdLomgIR0CW2dwo9cKPdX2UKGgGR8Ay1XpW3jMnaAdLxGgIR0CW3V3fhuO0dX2UKGgGRz/190q6OHWSaAdLumgIR0CW3mgpBomHdX2UKGgGR0BcUwlWwNb1aAdN6ANoCEdAluHbGFSKnHV9lChoBkfARAAKKHfuTmgHS6BoCEdAlu0iMYMvy3V9lChoBkdAZJ81SflIVmgHTegDaAhHQJbwNP9DQZ51fZQoaAZHQFjgUH6dlNFoB03oA2gIR0CW9QLDAJswdX2UKGgGR0Bg7QkiUxEfaAdN6ANoCEdAlvXYZAIIGHV9lChoBkdAYAoJRfnfVWgHTegDaAhHQJb44Y51eSl1fZQoaAZHQGIJJKraM75oB03oA2gIR0CW/cTkQwsYdX2UKGgGR0BjU8CHRCyAaAdN6ANoCEdAlv4uoo/iYXV9lChoBkdAWRUd2gWadGgHTegDaAhHQJcE9jmSyMV1fZQoaAZHQGDFAW8AaNxoB03oA2gIR0CXCUgnc+JQdX2UKGgGR0BSopJ9RaX8aAdN6ANoCEdAlwmuBUaQ3nVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 80, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 100, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 1024, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
mk-ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b7185f8f6ced366b9012bbc7d8c006446bd085100493b2e050e9e13aef234b5e
3
+ size 151719
mk-ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.0.0a5
mk-ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7b752d5963b0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7b752d596440>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7b752d5964d0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7b752d596560>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7b752d5965f0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7b752d596680>",
13
+ "extract_features": "<function ActorCriticPolicy.extract_features at 0x7b752d596710>",
14
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7b752d5967a0>",
15
+ "_predict": "<function ActorCriticPolicy._predict at 0x7b752d596830>",
16
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7b752d5968c0>",
17
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7b752d596950>",
18
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7b752d5969e0>",
19
+ "__abstractmethods__": "frozenset()",
20
+ "_abc_impl": "<_abc._abc_data object at 0x7b75349d3000>"
21
+ },
22
+ "verbose": 1,
23
+ "policy_kwargs": {},
24
+ "num_timesteps": 1024000,
25
+ "_total_timesteps": 1000000,
26
+ "_num_timesteps_at_start": 0,
27
+ "seed": null,
28
+ "action_noise": null,
29
+ "start_time": 1701015427926273875,
30
+ "learning_rate": 0.0003,
31
+ "tensorboard_log": null,
32
+ "_last_obs": {
33
+ ":type:": "<class 'numpy.ndarray'>",
34
+ ":serialized:": "gAWV9QwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJaADAAAAAAAAHM+b75k0QI/byCWPFrsYr7dLoE7PiKVvQAAAAAAAAAApgqtPQSPwj5VkJ68akWYvslWW756YlQ9AAAAAAAAAACNT5U9j9YPuvSUhznT/u412ZLwOQ32n7gAAIA/AACAP6Jvsr44TVQ/zIsDv44Dt76clKu+KeuLvgAAAAAAAAAAJhtYPmmnFLy1deY8vcYuvU4Xhb2Q3W88AAAAAAAAAADy7qm+PL1JPdaOn76qs7u++cO4vhpznb4AAAAAAAAAAFp6jj4BDOO8f7yAO5UhpLtl4FK+yy8OPQAAgD8AAAAAJkK5PfbECLoECYk5NVIwtoyPzTpyWiW1AACAPwAAgD9m8xU9Qwq8PxfhBj87LZQ+tm7xvAdtqL0AAAAAAAAAAFrX3D2bgv49f6FJPnUm1r1DeWk9yjUBPgAAAAAAAAAA86yrvUirq7rSdlu7UcGaNTYwnzooswq1AACAPwAAgD8Dm1E/1CJ9viBS0LyDk908nWBLPfAM6TwAAAAAAAAAAM2/uL170pG6yD0/u4tjbDhWBzA6bffKOQAAgD8AAIA/Fr+nPpRxBD81w+Q8ptDDvo3kl70gEMq9AAAAAAAAAAADN7++TrRWP8K4D75ANOW+6PCuvlo1Fz4AAAAAAAAAAE2kKb6up/C6RtAevKpepbgP4qM73ruUOQAAgD8AAIA/M9dvPXE1BzpH/aA7NO8rPDi/2zuG4RC9AAAAAAAAgD8ajVw9hSuJuYtGZjoKc264NEMvu5L6hLkAAIA/AACAPzNk67z2KA66+sCPu7HYFLnDvxk76jGIOAAAgD8AAIA/fZyzPiuW2T0O53q9XFcOvtxx1T6Dt8C+AAAAAAAAgD+midW+Ub9zvXozjL2hFwS8yUw2Ppz3RLsAAIA/AACAP+p8G7/pAA09xHwWva1vgLyw+OI9TpnpPAAAAAAAAAAADXddPmTZCL09bPI9wbAXPJ2cbb6AQt48AACAPwAAgD8eAr2+yiIfvTWDXDuMbIc51RW8PRYbrLoAAIA/AACAPxaWm7705ye9rr1UvIP4H7vkC40+pQQONgAAgD8AAIA/ir2ovi0XOL2yw186ZqV2NbURbj5u9PI3AACAPwAAgD8Tszk++IeIPF8SATwEMAy9KZkTPhZnDb4AAAAAAACAP2ZFBD2t3rw/n6DMPgs/iD459Vi8OhwlvAAAAAAAAAAAM+V/vYV757kK7gy86hkPNTpHKDuqKHm0AACAPwAAgD+zd709PdoKueIz5L0Cd3U1JxFKOs0c6LQAAAAAAACAP41Fjj5o7ak+p5a0uX9WhL5KwRg+Y6YoPgAAAAAAAAAA0yQpvnGEYbtTIe632kSiOGLOejxQr+42AACAPwAAgD/NBu882RrsPkLfB72plZe+AAZOvsIMjL0AAAAAAAAAAFWn5L5cjwq8U4WTug8iGjjQ2PO9YEHruAAAgD8AAIA/up+OPtssv7wTpRq7Pdp2ObENKL5yID86AACAPwAAgD8AWhw+bI03P3S/Jz7Ghwu/iyohPpNlCD4AAAAAAAAAAHB1qz5YTJO9K2q2utxNEDdj0Lu+2mtlNwAAAAAAAIA/3aMRP+w10r0ykTo9xYbWuinUwjwbC7u8AACAPwAAgD/WiEg/bclsvp2xfzr33oi40EHSvTJdlrkAAIA/AACAPyhhnb4Kdwg6fO0nvRHx3TwPHgq8FMG8vQAAgD8AAIA/s1ChPVxzerql0D+8yuVmNceSQbkKnc20AACAPwAAgD/N7Kw6ZruMP24aDr2mGM6+XI6XPQnCEb0AAAAAAAAAAG3pDj4L7jE/RRguvm6DW74QZEq+MVoKvAAAAAAAAAAAqlL5PnbaOz0yDAs+VOc9PWuDqT6m4IQ7AACAPwAAAAAayz8+sXgFPILJyrzpQq26RIqMPStIobsAAIA/AACAPzCqFT+4Jxa+dUrIPXuCgLwPilC+IA29vAAAgD8AAIA/2q7VPauajj81Umg+/rr3vsqAOj4JgK89AAAAAAAAAAAz3HY+RHcNPwruVr6TJrK+vl04PZFki74AAAAAAAAAAMBJ2b0X6KY/1GcFvx5I2L4NgcK8xlwQvgAAAAAAAAAAcxfTvcMRb7oouhO7yzqStidhybqIZQQ2AACAPwAAgD/qDDU/h9uWvrMqoLxDKaA6d6fDvVcmmTUAAIA/AACAP9pG4r0uApo+yP35u9l0AL4cy868Njy6PQAAAAAAAAAAaMEUv7HvBjynEoG7d+HPuSU5DT6AHMg5AACAPwAAgD9mXD2+sfYFPKVEE7tr3AM5FAaVvR0T67kAAIA/AACAP80SvL3hgJe6Vpf9O9BAFzeW4dK6Rm0NNgAAgD8AAIA/zUcdvcPFVLqkl7i41fsCNsWwnjulo9M3AACAPwAAgD9zwY29I3k0PeJQb76GdH6+h0kmvjtxGr4AAAAAAAAAABqh3z0pmDm6lVB1uwa7dLt6K1u7zqyNOwAAgD8AAIA/M3+bvdejU7mijMO71PYAOM7BpbtSCZQ6AACAPwAAgD9aQ/K9SAmKuusHUDyEncQ8tycTO39+RjwAAIA/AACAP83Qmb1I1ai6MCm0OwyevLaV3uc6Fr+rtQAAgD8AAIA/M30dvhR8jrqG/0I98yIfPcVLYrotTwa+AACAPwAAgD+Dybk+0JaCvfYJjjp+y4S3BTZkvuqnMzcAAIA/AACAPzMRqb2Pghu4S/t4u00jYLYmO7Q6sXOTOgAAgD8AAIA/MzESPVz7cLqa+QW6ktQEOesdQbrdWw05AACAPwAAgD/z3p294SSQuhdrhbv6H4E4WXGyuRqSjTkAAIA/AACAPzMfyL32WFC6HXs4u2Z5LDWI4He7NvZTOgAAgD8AAIA/jc6RPp88gD/qMIg+HDr3vrSwVj7SvQU9AAAAAAAAAACKN1+/8ph9vnenxLzpJpI7PHCTvoj8Bb4AAIA/AACAP22Xuz7tuFS9ajzyOlbkcrnacUS+yZQYugAAgD8AAIA/hgUAPsMFazl4h3k8kLuzvOhCVLvW65c9AACAPwAAAACgu7E+nQJFP2P+Pj76h6e+SnlBvcpvib0AAAAAAAAAAID6Ab1x7Uy5skhwO4t3nzZJ4z+7qwCMugAAgD8AAIA/TfQzPUiTiro174672z7LvFq5JDp747G9AAAAAAAAgD+am9g9XB9EupNtz7rF8He89g83O+KKWb0AAAAAAACAPwXRz764gpa9CUisvPNLpjsMQrQ9d5G8PAAAgD8AAAAAleK5vuNoSD29bmg9UVqzuzEWLr7ceBy8AACAPwAAgD/GqI0+nGUqvB6oYrjx6ow2oSmbvX5ohTcAAIA/AACAP4Ak1r2Pjjy66hlgvFz1xrYeed46ce4xNgAAgD8AAIA/gFNQPY9SabqLLUY8reJyNj8RCzsKL181AACAPwAAgD8zuzk8j14/ur4ePDyvv202W5a0O1q3ZDUAAIA/AACAP4Bltb2hKuY9DdNDPi8VQb5OUJc7JljJPAAAAAAAAAAARvyBPgFOhrw+HMo5D/doOFpQ+L2zfQK5AACAPwAAgD/NXmw94UrIOTKXETu2y028SI0Cu0ejDj0AAAAAAAAAADMvDzz2KBS2CHLivLf9ILlcqiC7Hd6VOAAAgD8AAIA/AKt0PWm8Grxu64S8J3+PPJVxjb0aRG49AACAPwAAgD8zsTo9KXgmumG7RLtVfaozJoqnOoVgYDoAAIA/AACAP5Wr1b7iafA+AwepvKqH476t+8u+CmwDvQAAAAAAAAAAe8nIviLwm72oiU+8X0cIusAFFD4oKTK8AACAPwAAgD+7yf6+JFQ6vV5vwbtJfUE5OTuDvQWDmjgAAIA/AACAPzOv7rz2mDS68h58OzU3xbbzC7m7IPGRugAAgD8AAIA/w8fyPoba/D7Y3Bc8bBEWvoMpDj5f5hK9AAAAAAAAAACGwpc+/LeUP9oksD43wJW+w8GkPs7fMT4AAAAAAAAAAECW5j0pmDm6sJtwvLy+rLZJxY65NoUaNgAAAAAAAIA/UFXjPjHdb716DmU9UYsjvI47pb7THry8AACAPwAAgD8zbYs8hcu7uW1TWDq8D001zoMZO2LNebkAAIA/AACAP3NWwT3DKTy6nQnOOz1qnziV1Ba5TZq5uAAAgD8AAIA/E6+rPojYmr1LVc228kewtiuBxL6AMpizAACAPwAAgD9NgEu9hWO0uek8proaBBe2eNdGOwuniTUAAIA/AACAP7bZ0j5ISbO6LGSxOt0/A7h85E+9svFKuQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYktkSwiGlIwBQ5R0lFKULg=="
35
+ },
36
+ "_last_episode_starts": {
37
+ ":type:": "<class 'numpy.ndarray'>",
38
+ ":serialized:": "gAWV1wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZkAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiS2SFlIwBQ5R0lFKULg=="
39
+ },
40
+ "_last_original_obs": null,
41
+ "_episode_num": 0,
42
+ "use_sde": false,
43
+ "sde_sample_freq": -1,
44
+ "_current_progress_remaining": -0.02400000000000002,
45
+ "_stats_window_size": 100,
46
+ "ep_info_buffer": {
47
+ ":type:": "<class 'collections.deque'>",
48
+ ":serialized:": "gAWVKQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGIkQ5/9YOmMAWyUTegDjAF0lEdAlbpsByS3b3V9lChoBkdAZOlmGM4tH2gHTegDaAhHQJW7M8U21lZ1fZQoaAZHQF6zuPFNtZVoB03oA2gIR0CVveDxb0OFdX2UKGgGR0BbVYjKPn0TaAdN6ANoCEdAlcC/7SApa3V9lChoBkdAXoA75mAbymgHTegDaAhHQJXJiy4Wk8B1fZQoaAZHQGBZwF9roGJoB03oA2gIR0CVzX4QjD8+dX2UKGgGR0BUbVMmF8G+aAdN6ANoCEdAldNP8hs673V9lChoBkdAZdvfQa72+WgHTegDaAhHQJXTesny/bl1fZQoaAZHQF7K0pEx7AtoB03oA2gIR0CV1gtnwob5dX2UKGgGR0Be2arzXjEOaAdN6ANoCEdAldc8FUyYX3V9lChoBkdAWefueBg/kmgHTegDaAhHQJXYL6tT1kF1fZQoaAZHQBmJQHiWE9NoB00EAWgIR0CV2ldEsrd4dX2UKGgGR0BeVgFs54nnaAdN6ANoCEdAldxXlXA/LXV9lChoBkdAY5NQQ+UyHmgHTegDaAhHQJXeR1dPci51fZQoaAZHwAAJ35eqrBFoB0vMaAhHQJXeTgIhQnB1fZQoaAZHQGTdhUJfICFoB03oA2gIR0CV315kbxVidX2UKGgGR0BgM3DNyHVPaAdN6ANoCEdAleM54B3iaXV9lChoBkdAYKw9vjwQUmgHTegDaAhHQJXlb4qPOpt1fZQoaAZHQDPRWcSXdCVoB0vVaAhHQJXttUR3/xV1fZQoaAZHQDpeoVEd/8VoB0vRaAhHQJXvkp2ECeV1fZQoaAZHQELnzK9wm3RoB0u3aAhHQJXykwudwvR1fZQoaAZHQGBFeOfdyktoB03oA2gIR0CV8utPpIMCdX2UKGgGR0AYMfHPu5SWaAdLsmgIR0CV9u0TDfm+dX2UKGgGR0A8X+2E0zj4aAdLx2gIR0CV+QXHim2tdX2UKGgGR0BhaWYSg5BDaAdN6ANoCEdAlfxuDjBEa3V9lChoBkdAY8Q0tyxRmGgHTegDaAhHQJYAU9gWrOt1fZQoaAZHQGbJlbmlqJxoB03oA2gIR0CWAkz2OAAidX2UKGgGR0BQ8MuzyBkJaAdN6ANoCEdAlgKkNSZSenV9lChoBkdAQ3tVea8Yh2gHTegDaAhHQJYGgKE384x1fZQoaAZHQGHuu89Oh01oB03oA2gIR0CWDFO6/ZdwdX2UKGgGR0BhqWoP07KaaAdN6ANoCEdAlgzpoGpuM3V9lChoBkdASljPt2LYPGgHS5toCEdAlg3QarFOwnV9lChoBkdAAIrOJLuhK2gHS9toCEdAlhU5yp71I3V9lChoBkdAYXOAJ9iMHmgHTegDaAhHQJYaqjfvWpZ1fZQoaAZHwCzuq5sj3VVoB0uxaAhHQJYl4azeGfx1fZQoaAZHQFleez2OAAhoB03oA2gIR0CWKpqv/zasdX2UKGgGR8BU9by+Yc//aAdNowFoCEdAlix+VopQUHV9lChoBkdAIiy1Vo6CDmgHS7loCEdAljKp4rz5GnV9lChoBkdARIFbmlqJuWgHS/BoCEdAljfNZFG5MHV9lChoBkdAYXsdI5HVgGgHTegDaAhHQJY9cAAAAAB1fZQoaAZHQFfR28qWkadoB03oA2gIR0CWQFId2gWadX2UKGgGR0BZMbhR64UfaAdN6ANoCEdAlkC7dadMCnV9lChoBkdAXEB9Wp6yB2gHTegDaAhHQJZBe6nR9gF1fZQoaAZHQFX7PX05EMNoB03oA2gIR0CWQd4IrvsrdX2UKGgGR0AWInRb8m8eaAdL6mgIR0CWQ+PCEYfodX2UKGgGR0BT0Gg8KXv6aAdN6ANoCEdAlkcU+s5n13V9lChoBkdAYhTIy0rsjWgHTegDaAhHQJZIqXTmW+p1fZQoaAZHQGCUsoDxLChoB03oA2gIR0CWT3fOUt7KdX2UKGgGR0BdZ/kRzzVdaAdN6ANoCEdAllIU+s5n13V9lChoBkdAUbvtF8XvY2gHS6ZoCEdAllZeYUnG83V9lChoBkdAMJHndO6/ZmgHS7ZoCEdAllfnvYvnKXV9lChoBkdAKkSc9W6shmgHS+xoCEdAllkKClJpWXV9lChoBkdACTekYXO4X2gHS8VoCEdAllqlPFefI3V9lChoBkdAVaPTXrdFfGgHTegDaAhHQJZcTlPrOZ91fZQoaAZHQGG8aS1Vo6FoB03oA2gIR0CWYCeuFHrhdX2UKGgGR0BatHgHeJpGaAdN6ANoCEdAlmfxqfvnbXV9lChoBkc/sU+cH4XXRWgHS81oCEdAlmlwTufEoHV9lChoBkdAXjwdOqNp/WgHTegDaAhHQJZrXzWf9P11fZQoaAZHQGffat1ZDAtoB00YAmgIR0CWbcJ/G2kSdX2UKGgGR0BhciagElmfaAdN6ANoCEdAlnfFpCa7VnV9lChoBkdAYRxwrDqGDmgHTegDaAhHQJZ8M1rIo3J1fZQoaAZHQGcLEsasIVxoB03oA2gIR0CWfvH1e0HAdX2UKGgGR0Bhcln9NvfkaAdN6ANoCEdAloKVpj+aSnV9lChoBkdAXZRvAGjbjGgHTegDaAhHQJaDYO8TSLJ1fZQoaAZHwCPJuEVWS2ZoB0vFaAhHQJaIBkjHGS91fZQoaAZHQGI/A3DNyHVoB03oA2gIR0CWikqT8pCsdX2UKGgGR0BlBLyMDOkdaAdN6ANoCEdAlo5cvh60IHV9lChoBkdATrs8TzundmgHS75oCEdAlpSGlMyrP3V9lChoBkdAZdpwYLsru2gHTegDaAhHQJacXv2GqPx1fZQoaAZHQEMzoFmnO0NoB0u1aAhHQJaiEHKOktV1fZQoaAZHQGAeN0FKTStoB03oA2gIR0CWptiyIHkcdX2UKGgGR0A/WMGorFwUaAdLq2gIR0CWqlus90RwdX2UKGgGR7/KCo0hvBJqaAdLxWgIR0CWrTXWvr4WdX2UKGgGR0Bh6lLeyiVTaAdN6ANoCEdAlq7sbaRISXV9lChoBkdAXXPT/hl182gHTegDaAhHQJa2d/ZuhsZ1fZQoaAZHQE1SsnRb8m9oB0uoaAhHQJa5GXJHRTl1fZQoaAZHQFdh8aXKKYRoB03oA2gIR0CWu4lDWsijdX2UKGgGR0BkcJid8RcvaAdN6ANoCEdAlsBqpPykK3V9lChoBkdAUMPnRsuWbGgHTegDaAhHQJbA3oPkJa91fZQoaAZHQFpms0YTCchoB03oA2gIR0CWwfybhFVldX2UKGgGR0BhJHNC7btaaAdN6ANoCEdAlsZL127nPnV9lChoBkdANTlrIo3JgmgHTegDaAhHQJbK9EhJRO11fZQoaAZHQGBWWrGR3eNoB03oA2gIR0CWzEl5GBnSdX2UKGgGR0BbsWUfPompaAdN6ANoCEdAls5QWnCO3nV9lChoBkdAW+nqHGjsU2gHTegDaAhHQJbRyKQ7tAt1fZQoaAZHQFPGB5X2dupoB03oA2gIR0CW2PIg/1QJdX2UKGgGR8BAoF6iTMaCaAdLomgIR0CW2dwo9cKPdX2UKGgGR8Ay1XpW3jMnaAdLxGgIR0CW3V3fhuO0dX2UKGgGRz/190q6OHWSaAdLumgIR0CW3mgpBomHdX2UKGgGR0BcUwlWwNb1aAdN6ANoCEdAluHbGFSKnHV9lChoBkfARAAKKHfuTmgHS6BoCEdAlu0iMYMvy3V9lChoBkdAZJ81SflIVmgHTegDaAhHQJbwNP9DQZ51fZQoaAZHQFjgUH6dlNFoB03oA2gIR0CW9QLDAJswdX2UKGgGR0Bg7QkiUxEfaAdN6ANoCEdAlvXYZAIIGHV9lChoBkdAYAoJRfnfVWgHTegDaAhHQJb44Y51eSl1fZQoaAZHQGIJJKraM75oB03oA2gIR0CW/cTkQwsYdX2UKGgGR0BjU8CHRCyAaAdN6ANoCEdAlv4uoo/iYXV9lChoBkdAWRUd2gWadGgHTegDaAhHQJcE9jmSyMV1fZQoaAZHQGDFAW8AaNxoB03oA2gIR0CXCUgnc+JQdX2UKGgGR0BSopJ9RaX8aAdN6ANoCEdAlwmuBUaQ3nVlLg=="
49
+ },
50
+ "ep_success_buffer": {
51
+ ":type:": "<class 'collections.deque'>",
52
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
53
+ },
54
+ "_n_updates": 80,
55
+ "observation_space": {
56
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
57
+ ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
58
+ "dtype": "float32",
59
+ "bounded_below": "[ True True True True True True True True]",
60
+ "bounded_above": "[ True True True True True True True True]",
61
+ "_shape": [
62
+ 8
63
+ ],
64
+ "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
65
+ "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
66
+ "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
67
+ "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
68
+ "_np_random": null
69
+ },
70
+ "action_space": {
71
+ ":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
72
+ ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
73
+ "n": "4",
74
+ "start": "0",
75
+ "_shape": [],
76
+ "dtype": "int64",
77
+ "_np_random": null
78
+ },
79
+ "n_envs": 100,
80
+ "n_steps": 1024,
81
+ "gamma": 0.999,
82
+ "gae_lambda": 0.98,
83
+ "ent_coef": 0.01,
84
+ "vf_coef": 0.5,
85
+ "max_grad_norm": 0.5,
86
+ "batch_size": 1024,
87
+ "n_epochs": 4,
88
+ "clip_range": {
89
+ ":type:": "<class 'function'>",
90
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
91
+ },
92
+ "clip_range_vf": null,
93
+ "normalize_advantage": true,
94
+ "target_kl": null,
95
+ "lr_schedule": {
96
+ ":type:": "<class 'function'>",
97
+ ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
98
+ }
99
+ }
mk-ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:614d9be1127b2dd529b613ddd15feaa61ef6477ad119e4e851d95a864b35e829
3
+ size 88362
mk-ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6c60bbaa7e5b244dc12cd0589e39ad5c2e65b4f22ee0f8008001a9436038b3a6
3
+ size 43762
mk-ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
3
+ size 864
mk-ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023
2
+ - Python: 3.10.12
3
+ - Stable-Baselines3: 2.0.0a5
4
+ - PyTorch: 2.1.0+cu118
5
+ - GPU Enabled: True
6
+ - Numpy: 1.23.5
7
+ - Cloudpickle: 2.2.1
8
+ - Gymnasium: 0.28.1
9
+ - OpenAI Gym: 0.25.2
replay.mp4 ADDED
Binary file (200 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 164.85550857484085, "std_reward": 70.94168555102212, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-11-26T16:36:26.351197"}