File size: 2,057 Bytes
c404c89
 
 
efd8c12
c404c89
 
efd8c12
c404c89
 
9c7deb0
c404c89
efd8c12
c404c89
 
 
9c7deb0
c404c89
9891239
efd8c12
c404c89
 
 
 
9c7deb0
efd8c12
9c7deb0
c404c89
 
 
 
 
efd8c12
c404c89
efd8c12
c404c89
efd8c12
 
c404c89
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
license: apache-2.0
tags:
- whisper-event
- generated_from_trainer
datasets:
- facebook/voxpopuli
metrics:
- wer
base_model: openai/whisper-small
model-index:
- name: Whisper Small Croatian
  results:
  - task:
      type: automatic-speech-recognition
      name: Automatic Speech Recognition
    dataset:
      name: facebook/voxpopuli
      type: facebook/voxpopuli
      config: hr
      split: test
      args: hr
    metrics:
    - type: wer
      value: 25.37305060024683
      name: Wer
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Whisper Small Croatian

This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the facebook/voxpopuli hr dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6325
- Wer: 25.3731

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Wer     |
|:-------------:|:------:|:----:|:---------------:|:-------:|
| 0.0028        | 24.01  | 1000 | 0.5303          | 26.1752 |
| 0.0006        | 49.01  | 2000 | 0.5849          | 25.4123 |
| 0.0003        | 74.01  | 3000 | 0.6141          | 25.6311 |
| 0.0002        | 99.01  | 4000 | 0.6325          | 25.3731 |
| 0.0002        | 124.01 | 5000 | 0.6405          | 25.4348 |


### Framework versions

- Transformers 4.26.0.dev0
- Pytorch 1.13.0+cu117
- Datasets 2.7.1.dev0
- Tokenizers 0.13.2