File size: 2,065 Bytes
e6af29e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
---
library_name: transformers
license: mit
base_model: facebook/esm2_t33_650M_UR50D
tags:
- generated_from_trainer
metrics:
- accuracy
- precision
- recall
model-index:
- name: esm2_t33_650M_UR50D-finetuned
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# esm2_t33_650M_UR50D-finetuned

This model is a fine-tuned version of [facebook/esm2_t33_650M_UR50D](https://huggingface.co/facebook/esm2_t33_650M_UR50D) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4409
- Tp: 539
- Tn: 617
- Fp: 47
- Fn: 93
- Accuracy: 0.8920
- Precision: 0.9198
- Recall: 0.8528
- F1-score: 0.8851
- Auc: 0.8910
- Mcc: 0.7854

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3

### Training results

| Training Loss | Epoch | Step | Validation Loss | Tp  | Tn  | Fp | Fn  | Accuracy | Precision | Recall | F1-score | Auc    | Mcc    |
|:-------------:|:-----:|:----:|:---------------:|:---:|:---:|:--:|:---:|:--------:|:---------:|:------:|:--------:|:------:|:------:|
| 0.393         | 1.0   | 1296 | 0.3616          | 507 | 615 | 49 | 125 | 0.8657   | 0.9119    | 0.8022 | 0.8535   | 0.8642 | 0.7356 |
| 0.3052        | 2.0   | 2592 | 0.3159          | 536 | 608 | 56 | 96  | 0.8827   | 0.9054    | 0.8481 | 0.8758   | 0.8819 | 0.7664 |
| 0.166         | 3.0   | 3888 | 0.4409          | 539 | 617 | 47 | 93  | 0.8920   | 0.9198    | 0.8528 | 0.8851   | 0.8910 | 0.7854 |


### Framework versions

- Transformers 4.45.2
- Pytorch 1.13.1+cu117
- Datasets 3.0.1
- Tokenizers 0.20.1