mini1013 commited on
Commit
eb1d60c
·
verified ·
1 Parent(s): 7472b88

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 한국금거래소 순금 길상무늬 골드바 1g 기본 종이 케이스 주식회사 한국금거래소디지털에셋
14
+ - text: '[뽀르띠/부모님선물] 순금 24K 0.5g 카드형 카네이션 골드바 06 존경_화이트 뽀르띠'
15
+ - text: 순금 미니골드바 3.75g 각인 메세지 편지 순금선물 24K 999.9 재테크 금투자 3.75g 골드바+메세지 각인+고급케이스 골드베이
16
+ - text: 순금뱃지 1.875g 기업 회사 은행 병원 대학교 금뱃지 2.금형추가 투자골드
17
+ - text: '[한국표준금거래소] 컷팅 하트 골드바 1g 고급 패키지+쇼핑백O (주)한국표준거래소'
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9976689976689976
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 3 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 0.0 | <ul><li>'[한국표준금거래소] 999.9‰순금 골드바 11.25g 쇼핑백X (주)한국표준거래소'</li><li>'한국금거래소 순금 꽃다발 골드바 0.2g 기본 종이 케이스 한국금거래소디지털에셋'</li><li>'한국금거래소 순금 비상금 통장 골드바 1g 주식회사 한국금거래소디지털에셋'</li></ul> |
66
+ | 1.0 | <ul><li>'[한국금거래소]한국금거래소 순금 복주머니 3.75g 롯데아이몰'</li><li>'[한국금거래소] 어락도 금수저 카드 3.75g 주식회사 한국금거래소디지털에셋'</li><li>'순금거북이 37.5g 종로골드'</li></ul> |
67
+ | 2.0 | <ul><li>'[한국금거래소] 실버바 100g 은테크 은투자 은시세 생일 기념일 축하 선물 주식회사 한국금거래소디지털에셋'</li><li>'[100g 실버바] 한국금거래소 99.99% 투자용 은괴 주식회사 골드나라'</li><li>'[삼성금거래소]Silver Bar(실버바)100g AKmall'</li></ul> |
68
+
69
+ ## Evaluation
70
+
71
+ ### Metrics
72
+ | Label | Metric |
73
+ |:--------|:-------|
74
+ | **all** | 0.9977 |
75
+
76
+ ## Uses
77
+
78
+ ### Direct Use for Inference
79
+
80
+ First install the SetFit library:
81
+
82
+ ```bash
83
+ pip install setfit
84
+ ```
85
+
86
+ Then you can load this model and run inference.
87
+
88
+ ```python
89
+ from setfit import SetFitModel
90
+
91
+ # Download from the 🤗 Hub
92
+ model = SetFitModel.from_pretrained("mini1013/master_cate_ac5")
93
+ # Run inference
94
+ preds = model("순금뱃지 1.875g 기업 회사 은행 병원 대학교 금뱃지 2.금형추가 투자골드")
95
+ ```
96
+
97
+ <!--
98
+ ### Downstream Use
99
+
100
+ *List how someone could finetune this model on their own dataset.*
101
+ -->
102
+
103
+ <!--
104
+ ### Out-of-Scope Use
105
+
106
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
107
+ -->
108
+
109
+ <!--
110
+ ## Bias, Risks and Limitations
111
+
112
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
113
+ -->
114
+
115
+ <!--
116
+ ### Recommendations
117
+
118
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
119
+ -->
120
+
121
+ ## Training Details
122
+
123
+ ### Training Set Metrics
124
+ | Training set | Min | Median | Max |
125
+ |:-------------|:----|:-------|:----|
126
+ | Word count | 4 | 7.7583 | 17 |
127
+
128
+ | Label | Training Sample Count |
129
+ |:------|:----------------------|
130
+ | 0.0 | 50 |
131
+ | 1.0 | 50 |
132
+ | 2.0 | 20 |
133
+
134
+ ### Training Hyperparameters
135
+ - batch_size: (512, 512)
136
+ - num_epochs: (20, 20)
137
+ - max_steps: -1
138
+ - sampling_strategy: oversampling
139
+ - num_iterations: 40
140
+ - body_learning_rate: (2e-05, 2e-05)
141
+ - head_learning_rate: 2e-05
142
+ - loss: CosineSimilarityLoss
143
+ - distance_metric: cosine_distance
144
+ - margin: 0.25
145
+ - end_to_end: False
146
+ - use_amp: False
147
+ - warmup_proportion: 0.1
148
+ - seed: 42
149
+ - eval_max_steps: -1
150
+ - load_best_model_at_end: False
151
+
152
+ ### Training Results
153
+ | Epoch | Step | Training Loss | Validation Loss |
154
+ |:-------:|:----:|:-------------:|:---------------:|
155
+ | 0.0526 | 1 | 0.4971 | - |
156
+ | 2.6316 | 50 | 0.0373 | - |
157
+ | 5.2632 | 100 | 0.0001 | - |
158
+ | 7.8947 | 150 | 0.0 | - |
159
+ | 10.5263 | 200 | 0.0 | - |
160
+ | 13.1579 | 250 | 0.0 | - |
161
+ | 15.7895 | 300 | 0.0 | - |
162
+ | 18.4211 | 350 | 0.0 | - |
163
+
164
+ ### Framework Versions
165
+ - Python: 3.10.12
166
+ - SetFit: 1.1.0.dev0
167
+ - Sentence Transformers: 3.1.1
168
+ - Transformers: 4.46.1
169
+ - PyTorch: 2.4.0+cu121
170
+ - Datasets: 2.20.0
171
+ - Tokenizers: 0.20.0
172
+
173
+ ## Citation
174
+
175
+ ### BibTeX
176
+ ```bibtex
177
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
178
+ doi = {10.48550/ARXIV.2209.11055},
179
+ url = {https://arxiv.org/abs/2209.11055},
180
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
181
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
182
+ title = {Efficient Few-Shot Learning Without Prompts},
183
+ publisher = {arXiv},
184
+ year = {2022},
185
+ copyright = {Creative Commons Attribution 4.0 International}
186
+ }
187
+ ```
188
+
189
+ <!--
190
+ ## Glossary
191
+
192
+ *Clearly define terms in order to be accessible across audiences.*
193
+ -->
194
+
195
+ <!--
196
+ ## Model Card Authors
197
+
198
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
199
+ -->
200
+
201
+ <!--
202
+ ## Model Card Contact
203
+
204
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
205
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_ac",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07add368362f7aab38f46eeffcb0f71a6209ef89172b92da895bf0e6e9a812b7
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc61c57e2d4efe51691c16bb8387b4303929691c44309a2f20ec447ecaf5a818
3
+ size 19295
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff