mini1013 commited on
Commit
17bf755
·
verified ·
1 Parent(s): cb82653

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,241 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 여성 가방 숄더백 미니 크로스백 퀼팅백 체인백 토트백 미니백 여자 핸드백 구름백 클러치백 직장인 백팩 프리아_카멜 더블유팝
14
+ - text: 국내 잔스포츠 백팩 슈퍼브레이크 4QUT 블랙 학생 여성 가벼운 가방 캠핑 여행 당일 가원
15
+ - text: 국내생산 코튼 양줄면주머니 미니&에코 주머니 7종 학원 학교 만들기수업 양줄주머니_14cmX28cm(J14) 명성패키지
16
+ - text: 웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로
17
+ - text: 엔비조네/가방끈/가방끈리폼/가죽끈/크로스끈/숄더끈/스트랩 AOR오링25mm_블랙오플_폭11mm *35cm 니켈 엔비조네
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.7867699642431466
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 10 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 3.0 | <ul><li>'[현대백화점][루이까또즈] MOONMOON(문문) 여성호보백 HR3SO02BL (주)현대백화점'</li><li>'소프트레더 파스텔 보부상 빅숄더백 휘뚜루마뚜루가방 토드백 블랙_one size 아이디어코리아 주식회사'</li><li>'DRAGON DIFFUSION 드래곤디퓨전 폼폼 더블 점프백 여성 버킷백 8838 드래곤백 다크브라운 (DARK BROWN) 시계1위워치짱'</li></ul> |
66
+ | 7.0 | <ul><li>'디어 4colors_H70301010 (W)퍼플와인 '</li><li>'[마이클코어스][정상가 1080000원] 에밀리아 라지 레더 사첼 35H0GU5S7T2171 신세계몰'</li><li>'칼린 소프트M 10colors _H71307020 (Y)라임네온_one size (주)칼린홍대점'</li></ul> |
67
+ | 1.0 | <ul><li>'마젤란9901 메신저백 크로스백 학생 여행용 가방 백팩 1_MA-9901-BlackPurple(+LK) 더블유팝'</li><li>'마젤란9901 메신저백 크로스백 학생 여행용 가방 백팩 1_MA-9901-D.Gray(+LK) 더블유팝'</li><li>'마젤란9901 메신저백 크로스백 학생 여행용 가방 백팩 1_MA-9901-Black(+LK) 더블유팝'</li></ul> |
68
+ | 9.0 | <ul><li>'룰루레몬 에브리웨어 벨트 백 Fleece WHTO/GOLD White Opal/Gold - O/S 오늘의원픽'</li><li>'[리본즈] LEMAIRE 남성 숄더백 37408558 블랙_ONE SIZE/단일상품 마리오아울렛몰'</li><li>'[코치][공식] 홀 벨트 백 CU103 WYE [00001] 없음 현대백화점'</li></ul> |
69
+ | 0.0 | <ul><li>'가죽가방끈 천연소가죽 가죽 스트랩 32Color 블랙12mm페이던트골드 대성메디칼'</li><li>'[최초가 228,000원][잘모이] 밍크 듀에 퍼 스트랩 LTZ-5205 168688 와인���카이블루 주식회사 미르에셋'</li><li>'[조이그라이슨](강남점) 첼시 스트랩 LW4SX6880_55 GOLD 신세계백화점'</li></ul> |
70
+ | 5.0 | <ul><li>'[소마치] 트래블 여권 지갑 파우치 핸드폰 미니 크로스백 카키_체인105cm(키160전후) 주식회사 소마치'</li><li>'비비안웨스트우드 코튼 숄더백 EDGWARE (3컬러) chacoal(당일발송) KHY INTERNATIONAL'</li><li>'남여 공용 미니 메신저백 귀여운 크로스백 학생 미니백 여행 보조 가방 여행용 보조백 아이보리 구공구코리아'</li></ul> |
71
+ | 2.0 | <ul><li>'메종미네드 MAISON MINED TWO POCKET BACKPACK S OC오피스'</li><li>'백팩01K1280ZSK외1종 블랙 롯데백화점1관'</li><li>'ANC CLASSIC BACKPACK_BLACK BLACK 주식회사 데일리컴퍼니'</li></ul> |
72
+ | 4.0 | <ul><li>'[스타벅스]텀블러 가방 컵홀더 데일리 캔버스 에코백 지퍼형_베이지 씨에스 인더스트리'</li><li>'마리떼 FRANCOIS GIRBAUD CLASSIC LOGO ECO BAG natural OS 다함'</li><li>'마크 곤잘레스 Print Eco Bag - 블랙 568032 BLACK_FREE 라임e커머스'</li></ul> |
73
+ | 8.0 | <ul><li>'국내생산 코튼 양줄면주머니 미니&에코 주머니 7종 학원 학교 만들기수업 양줄주머니_20cmX25cm(J20) 명성패키지'</li><li>'조리개 타입 반투명 파우치 보관 신발주머니 주머니 끈주머니 끈파우치 신주머니 여행용 중형(25X35) 정바른 길정'</li><li>'국내생산 코튼 화이트&블랙주머니 학원 학교 주머니만들기 W15_화이트 명성패키지'</li></ul> |
74
+ | 6.0 | <ul><li>'메종 마르지엘라 타비 스니커즈 S37WS0578 P4291 T1003 EU41(260-265) 보광컴퍼니'</li><li>'[롯데백화점]루이까또즈 클러치백 MO2DL03MDABL 롯데백화점_'</li><li>'깔끔한 여성용 데일리 핸드 스트랩 클러치 가방 남자클러치백 로우마켓'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Metric |
80
+ |:--------|:-------|
81
+ | **all** | 0.7868 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("mini1013/master_cate_ac9")
100
+ # Run inference
101
+ preds = model("웨빙 플라워 스트랩 레디백 길이조절 가방끈 어깨끈 리폼 3-플라워가방끈-흰색 이백프로")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:-------|:----|
133
+ | Word count | 3 | 9.6146 | 30 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------|:----------------------|
137
+ | 0.0 | 50 |
138
+ | 1.0 | 17 |
139
+ | 2.0 | 50 |
140
+ | 3.0 | 50 |
141
+ | 4.0 | 50 |
142
+ | 5.0 | 50 |
143
+ | 6.0 | 50 |
144
+ | 7.0 | 50 |
145
+ | 8.0 | 50 |
146
+ | 9.0 | 50 |
147
+
148
+ ### Training Hyperparameters
149
+ - batch_size: (512, 512)
150
+ - num_epochs: (20, 20)
151
+ - max_steps: -1
152
+ - sampling_strategy: oversampling
153
+ - num_iterations: 40
154
+ - body_learning_rate: (2e-05, 2e-05)
155
+ - head_learning_rate: 2e-05
156
+ - loss: CosineSimilarityLoss
157
+ - distance_metric: cosine_distance
158
+ - margin: 0.25
159
+ - end_to_end: False
160
+ - use_amp: False
161
+ - warmup_proportion: 0.1
162
+ - seed: 42
163
+ - eval_max_steps: -1
164
+ - load_best_model_at_end: False
165
+
166
+ ### Training Results
167
+ | Epoch | Step | Training Loss | Validation Loss |
168
+ |:-------:|:----:|:-------------:|:---------------:|
169
+ | 0.0137 | 1 | 0.4278 | - |
170
+ | 0.6849 | 50 | 0.3052 | - |
171
+ | 1.3699 | 100 | 0.1524 | - |
172
+ | 2.0548 | 150 | 0.0583 | - |
173
+ | 2.7397 | 200 | 0.0292 | - |
174
+ | 3.4247 | 250 | 0.0197 | - |
175
+ | 4.1096 | 300 | 0.0061 | - |
176
+ | 4.7945 | 350 | 0.0022 | - |
177
+ | 5.4795 | 400 | 0.0033 | - |
178
+ | 6.1644 | 450 | 0.0003 | - |
179
+ | 6.8493 | 500 | 0.0002 | - |
180
+ | 7.5342 | 550 | 0.0001 | - |
181
+ | 8.2192 | 600 | 0.0001 | - |
182
+ | 8.9041 | 650 | 0.0001 | - |
183
+ | 9.5890 | 700 | 0.0001 | - |
184
+ | 10.2740 | 750 | 0.0001 | - |
185
+ | 10.9589 | 800 | 0.0001 | - |
186
+ | 11.6438 | 850 | 0.0001 | - |
187
+ | 12.3288 | 900 | 0.0001 | - |
188
+ | 13.0137 | 950 | 0.0001 | - |
189
+ | 13.6986 | 1000 | 0.0001 | - |
190
+ | 14.3836 | 1050 | 0.0001 | - |
191
+ | 15.0685 | 1100 | 0.0001 | - |
192
+ | 15.7534 | 1150 | 0.0001 | - |
193
+ | 16.4384 | 1200 | 0.0001 | - |
194
+ | 17.1233 | 1250 | 0.0 | - |
195
+ | 17.8082 | 1300 | 0.0001 | - |
196
+ | 18.4932 | 1350 | 0.0001 | - |
197
+ | 19.1781 | 1400 | 0.0001 | - |
198
+ | 19.8630 | 1450 | 0.0001 | - |
199
+
200
+ ### Framework Versions
201
+ - Python: 3.10.12
202
+ - SetFit: 1.1.0.dev0
203
+ - Sentence Transformers: 3.1.1
204
+ - Transformers: 4.46.1
205
+ - PyTorch: 2.4.0+cu121
206
+ - Datasets: 2.20.0
207
+ - Tokenizers: 0.20.0
208
+
209
+ ## Citation
210
+
211
+ ### BibTeX
212
+ ```bibtex
213
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
214
+ doi = {10.48550/ARXIV.2209.11055},
215
+ url = {https://arxiv.org/abs/2209.11055},
216
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
217
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
218
+ title = {Efficient Few-Shot Learning Without Prompts},
219
+ publisher = {arXiv},
220
+ year = {2022},
221
+ copyright = {Creative Commons Attribution 4.0 International}
222
+ }
223
+ ```
224
+
225
+ <!--
226
+ ## Glossary
227
+
228
+ *Clearly define terms in order to be accessible across audiences.*
229
+ -->
230
+
231
+ <!--
232
+ ## Model Card Authors
233
+
234
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
235
+ -->
236
+
237
+ <!--
238
+ ## Model Card Contact
239
+
240
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
241
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_ac",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2eb8cf4cb6efd6e15fb4e54a777d1d8b914d926031e60f51913e46a7feff362a
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c8c85036d3f86422afad0c9fa55d54201211ff88df061d843defe40e627afe13
3
+ size 62407
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff