mini1013 commited on
Commit
0b81970
·
verified ·
1 Parent(s): c7c549e

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,705 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: AK몰_[랩시리즈][11][남자에센스] 데일리 레스큐 리페어 세럼 기획 세트 (+탄력로션 14ml 증정) 단일상품 (#M)위메프 >
14
+ 뷰티 > 명품화장품 > 남성화장품 > 남성화장품 위메프 > 뷰티 > 명품화장품 > 남성화장품 > 남성화장품
15
+ - text: 이니스프리 그린티 로션 포맨 143159 150ml x 1개 (#M)홈>화장품/미용>남성화장품>스킨 Naverstore > 화장품/미용
16
+ > 남성화장품 > 스킨
17
+ - text: 맨 리차징 로션 150ml LotteOn > 뷰티 > 남성화장품 > 로션 LotteOn > 뷰티 > 남성화장품 > 로션
18
+ - text: 헤라 옴므 에센스 인 에멀전 110ml LotteOn > 뷰티 > 스킨케어 > 로션/에멀젼 LotteOn > 뷰티 > 스킨케어 >
19
+ 로션/에멀젼
20
+ - text: 이니스프리 그린티 스킨 포맨 150ml × 14개 (#M)쿠팡 홈>뷰티>남성화장품>남성스킨케어>스킨/로션/크림 Coupang > 뷰티
21
+ > 로드샵 > 남성화장품 > 남성스킨케어 > 스킨/로션/크림
22
+ inference: true
23
+ model-index:
24
+ - name: SetFit with mini1013/master_domain
25
+ results:
26
+ - task:
27
+ type: text-classification
28
+ name: Text Classification
29
+ dataset:
30
+ name: Unknown
31
+ type: unknown
32
+ split: test
33
+ metrics:
34
+ - type: accuracy
35
+ value: 0.8309572301425662
36
+ name: Accuracy
37
+ ---
38
+
39
+ # SetFit with mini1013/master_domain
40
+
41
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
42
+
43
+ The model has been trained using an efficient few-shot learning technique that involves:
44
+
45
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
46
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
47
+
48
+ ## Model Details
49
+
50
+ ### Model Description
51
+ - **Model Type:** SetFit
52
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
53
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
54
+ - **Maximum Sequence Length:** 512 tokens
55
+ - **Number of Classes:** 11 classes
56
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
63
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
64
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
65
+
66
+ ### Model Labels
67
+ | Label | Examples |
68
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
69
+ | 3 | <ul><li>'[산타마리아노벨라]로지오네 도포 바르바 - 콜로니아 루사 100ml 화이트_Free (#M)화장품/미용>남성화장품>스킨 AD > Naverstore > smnovella브랜드스토어 > 전체상품'</li><li>'오딧세이 미니어처 스킨 에멀전 25ml x 10개 여행용 MinSellAmount (#M)화장품/향수>스킨케어>스킨/토너 Gmarket > 뷰티 > 화장품/향수 > 스킨케어 > 스킨/토너'</li><li>'비오템 옴므 아쿠아파워 토너 200ml × 2개 (#M)쿠팡 홈>뷰티>남성화장품>남성스킨케어>스킨/로션/크림 Coupang > 뷰티 > 명품뷰티 > 남성화장품 > 남성스킨케어 > 스킨/로션/크림'</li></ul> |
70
+ | 5 | <ul><li>'포스 수프림 메탈 아이 세럼 15ml/비오템 홈>화장품/미용>남성화장품>에센스;(#M)홈>화장품/미용>남성화장품>크림 Naverstore > 화장품/미용 > 남성화장품 > 크림'</li><li>'설화수 본윤에센스 140ml (#M)11st>스킨케어>로션/에멀션>로션/에멀션 11st > 뷰티 > 스킨케어 > 로션/에멀션 > 로션/에멀션'</li><li>'비오템 아쿠아파워 클리어에센스 100ml (#M)홈>화장품/미용>���성화장품>에센스 Naverstore > 화장품/미용 > 남성화장품 > 에센스'</li></ul> |
71
+ | 1 | <ul><li>'[나인위시스] VB포맨 톤업크림 SPF21 50ml LotteOn > 뷰티 > 남성화장품 > 메이크업 LotteOn > 뷰티 > 남성화장품 > 메이크업'</li><li>'비레디 레벨업 파운데이션 포 히어로즈 SPF50+ PA++++ 30ml 3호 제프리 (#M)홈>화장품/미용>남성화장품>메이크업 Naverstore > 화장품/미용 > 남성화장품 > 메이크업'</li><li>'맨즈 프라이머 비비 세트 - 도자기피부 MinSellAmount 화장품/향수>남성화장품>남성BB크림;(#M)화장품/향수>남성화장품>남성메이크업/BB Gmarket > 뷰티 > 화장품/향수 > 남성화장품 > 남성메이크업/BB'</li></ul> |
72
+ | 8 | <ul><li>'랩시리즈 그루밍 쿨링 쉐이브 크림 190ml (#M)화장품/미용>남성화장품>쉐이빙폼 Naverstore > 화장품/미용 > 남성화장품 > 쉐이빙폼'</li><li>'랩시리즈 안티에이지 맥스 LS 크림 50ml (#M)위메프 > 뷰티 > 남성화장품 > 남성 스킨케어 > 남성스킨 위메프 > 뷰티 > 남성화장품 > 남성 스킨케어 > 남성스킨'</li><li>'랩시리즈 안티에이지 맥스 LS 크림 50ml (#M)화장품/미용>남성화장품>에센스 Naverstore > 화장품/미용 > 남성화장품 > 에센스'</li></ul> |
73
+ | 2 | <ul><li>'브로앤팁스 수퍼 라이트 선크림 SPR50+ PA++++ 70ml × 1개 (#M)쿠팡 홈>뷰티>스킨케어>선케어/태닝>선케어>선블록/선크림/선로션 Coupang > 뷰티 > 남성화장품 > 남성스킨케어 > 선케어'</li><li>'MEN 릴랙싱 UV 프로펙터 SPF50+/PA+++ 릴랙싱UV프로텍터 LotteOn > 뷰티 > 명품화장품 > 남성화장품 LotteOn > 뷰티 > 명품화장품 > 남성화장품 > 선케어'</li><li>'유브이 디펜스 선 베이스 프레쉬 50ml(SPF50+) (#M)화장품/미용>남성화장품>선크림 Naverstore > 화장품/미용 > 남성화장품 > 선크림'</li></ul> |
74
+ | 10 | <ul><li>'세붐 스트라이크 맨테라피 마스크 MinSellAmount (#M)화장품/향수>팩/마스크>마스크시트 Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 마스크시트'</li><li>'[퓨어덤] 릴랙스 하이드라 남성용 마스크팩 50매 릴랙스 하이드라 남성용 마스크팩 50매 (#M)쿠팡 홈>뷰티>남성화장품>남성스킨케어>마스크/팩 Coupang > 뷰티 > 남성화장품 > 남성스킨케어 > 마스크/팩'</li><li>'크로마티크 마스크 200ml+샘플2종/염색모전용 MinSellAmount (#M)바디/헤어>헤어케어>헤어트리트먼트 Gmarket > 뷰티 > 바디/헤어 > 헤어케어 > 헤어트리트먼트'</li></ul> |
75
+ | 7 | <ul><li>'쿤달 퓨어 앤 세이프 쿨링 남성청결제 2구 세트 300ml LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 청결제 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 청결제'</li><li>'바버501 이너부스터 남성청결제 263ml 2타입 진저민트 단품 홈>전체상품;홈>화장품/미용>남성화장품>남성청결제;홈>클렌징;(#M)홈>BEST Naverstore > 화장품/미용 > 남성화장품 > 남성청결제'</li><li>'프리메라 후리 엔 후리 맨 에너자이징 포인트 클렌저 200ml 남성 청결제 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 청결제 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 청결제'</li></ul> |
76
+ | 4 | <ul><li>'수려한 효비담 정율 2종 기획세트 {SR3685} (#M)위메프 > 뷰티 > 스킨케어 > 스킨케어 세트 > 2종/3종 세트 위메프 > 뷰티 > 스킨케어 > 스킨케어 세트'</li><li>'수려한 건양 2종 기획세트 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트'</li><li>'공진향 군 자양 2종 기획세트 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트 LotteOn > 뷰티 > 남성화장품 > 남성화장품세트'</li></ul> |
77
+ | 0 | <ul><li>'오딧세이 미니 에멀전 25ml 10개 로션 미니어쳐 여행 오딧세이 미니로션/10개 (#M)11st>남성화장품>남성로션>남성로션 11st > 뷰티 > 남성화장품 > 남성로션'</li><li>'더 후 공진향 군 자양 로션 100ml (#M)화장품/미용>남성화장품>로션 Naverstore > 화장품/미용 > 남성화장품 > 로션'</li><li>'키엘 훼이셜 퓨얼 에너자이징 모이스처 트리트먼트 포 맨 125ml 홈>전체상품;(#M)홈>키엘 Naverstore > 화장품/미용 > 남성화장품 > 로션'</li></ul> |
78
+ | 9 | <ul><li>'질레트 프로글라이드 2in1젤 퓨어스포츠 4개 질레트 프로글라이드 2in1젤 퓨어스포츠 4개[G010*2] ssg > 뷰티 > 헤어/바디 > 면도/제모용품 ssg > 뷰티 > 헤어/바디 > 면도/제모용품'</li><li>'[질레트]질레트 포오미 멘솔 175g 2개 질레트 포오미 멘솔 175g 2개[G20*2] LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 목욕비누 LotteOn > 뷰티 > 헤어/바디 > 바디케어 > 목욕비누'</li><li>'[백화점][비오템] 티쀼르 씨솔트 스크럽 125ml (#M)GSSHOP>뷰티>명품화장품>현대백화점 GSSHOP > 뷰티 > 명품화장품 > 현대백화점 > 스킨케어'</li></ul> |
79
+ | 6 | <ul><li>'(15%+15%)한스킨 클렌징대장 전품목 클리어런스 세일 11.한스킨 인기 마스크 30매_콜라겐(B0004441) 화장품/향수>메디컬/드럭스토어>스킨/로션/미스트;(#M)화장품/향수>스킨케어>스킨/토너 Gmarket > 뷰티 > 화장품/향수 > 스킨케어'</li><li>'(SF)라네즈 크림스킨 옴므 올인원 150ml + 추가 증정 (#M)위메프 > 뷰티 > 남성화장품 > 남성 스킨케어 > 올인원 위메프 > 뷰티 > 남성화장품 > 남성 스킨케어 > 올인원'</li><li>'랩 시리즈 프로 LS 올-인-원 훼이스 트리트먼트 50ml 없음 (#M)홈>스킨케어>에센스/앰플 HMALL > 뷰티 > 스킨케어 > 에센스/앰플'</li></ul> |
80
+
81
+ ## Evaluation
82
+
83
+ ### Metrics
84
+ | Label | Accuracy |
85
+ |:--------|:---------|
86
+ | **all** | 0.8310 |
87
+
88
+ ## Uses
89
+
90
+ ### Direct Use for Inference
91
+
92
+ First install the SetFit library:
93
+
94
+ ```bash
95
+ pip install setfit
96
+ ```
97
+
98
+ Then you can load this model and run inference.
99
+
100
+ ```python
101
+ from setfit import SetFitModel
102
+
103
+ # Download from the 🤗 Hub
104
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt0_test_flat_top_cate")
105
+ # Run inference
106
+ preds = model("맨 리차징 로션 150ml LotteOn > 뷰티 > 남성화장품 > 로션 LotteOn > 뷰티 > 남성화장품 > 로션")
107
+ ```
108
+
109
+ <!--
110
+ ### Downstream Use
111
+
112
+ *List how someone could finetune this model on their own dataset.*
113
+ -->
114
+
115
+ <!--
116
+ ### Out-of-Scope Use
117
+
118
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
119
+ -->
120
+
121
+ <!--
122
+ ## Bias, Risks and Limitations
123
+
124
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
125
+ -->
126
+
127
+ <!--
128
+ ### Recommendations
129
+
130
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
131
+ -->
132
+
133
+ ## Training Details
134
+
135
+ ### Training Set Metrics
136
+ | Training set | Min | Median | Max |
137
+ |:-------------|:----|:--------|:----|
138
+ | Word count | 11 | 20.6699 | 63 |
139
+
140
+ | Label | Training Sample Count |
141
+ |:------|:----------------------|
142
+ | 0 | 50 |
143
+ | 1 | 50 |
144
+ | 2 | 50 |
145
+ | 3 | 50 |
146
+ | 4 | 50 |
147
+ | 5 | 50 |
148
+ | 6 | 50 |
149
+ | 7 | 50 |
150
+ | 8 | 50 |
151
+ | 9 | 50 |
152
+ | 10 | 18 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (64, 64)
156
+ - num_epochs: (30, 30)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 100
160
+ - body_learning_rate: (2e-05, 1e-05)
161
+ - head_learning_rate: 0.01
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - l2_weight: 0.01
169
+ - seed: 42
170
+ - eval_max_steps: -1
171
+ - load_best_model_at_end: False
172
+
173
+ ### Training Results
174
+ | Epoch | Step | Training Loss | Validation Loss |
175
+ |:-------:|:-----:|:-------------:|:---------------:|
176
+ | 0.0012 | 1 | 0.3982 | - |
177
+ | 0.0617 | 50 | 0.4478 | - |
178
+ | 0.1235 | 100 | 0.433 | - |
179
+ | 0.1852 | 150 | 0.402 | - |
180
+ | 0.2469 | 200 | 0.3982 | - |
181
+ | 0.3086 | 250 | 0.3669 | - |
182
+ | 0.3704 | 300 | 0.3331 | - |
183
+ | 0.4321 | 350 | 0.3142 | - |
184
+ | 0.4938 | 400 | 0.2879 | - |
185
+ | 0.5556 | 450 | 0.2728 | - |
186
+ | 0.6173 | 500 | 0.2562 | - |
187
+ | 0.6790 | 550 | 0.2449 | - |
188
+ | 0.7407 | 600 | 0.2335 | - |
189
+ | 0.8025 | 650 | 0.2113 | - |
190
+ | 0.8642 | 700 | 0.1952 | - |
191
+ | 0.9259 | 750 | 0.1881 | - |
192
+ | 0.9877 | 800 | 0.1775 | - |
193
+ | 1.0494 | 850 | 0.1609 | - |
194
+ | 1.1111 | 900 | 0.1559 | - |
195
+ | 1.1728 | 950 | 0.1385 | - |
196
+ | 1.2346 | 1000 | 0.1268 | - |
197
+ | 1.2963 | 1050 | 0.1115 | - |
198
+ | 1.3580 | 1100 | 0.1059 | - |
199
+ | 1.4198 | 1150 | 0.0861 | - |
200
+ | 1.4815 | 1200 | 0.0776 | - |
201
+ | 1.5432 | 1250 | 0.0676 | - |
202
+ | 1.6049 | 1300 | 0.0565 | - |
203
+ | 1.6667 | 1350 | 0.0511 | - |
204
+ | 1.7284 | 1400 | 0.0442 | - |
205
+ | 1.7901 | 1450 | 0.037 | - |
206
+ | 1.8519 | 1500 | 0.0375 | - |
207
+ | 1.9136 | 1550 | 0.0319 | - |
208
+ | 1.9753 | 1600 | 0.0272 | - |
209
+ | 2.0370 | 1650 | 0.0213 | - |
210
+ | 2.0988 | 1700 | 0.0173 | - |
211
+ | 2.1605 | 1750 | 0.0191 | - |
212
+ | 2.2222 | 1800 | 0.0152 | - |
213
+ | 2.2840 | 1850 | 0.0194 | - |
214
+ | 2.3457 | 1900 | 0.0152 | - |
215
+ | 2.4074 | 1950 | 0.0173 | - |
216
+ | 2.4691 | 2000 | 0.0123 | - |
217
+ | 2.5309 | 2050 | 0.0083 | - |
218
+ | 2.5926 | 2100 | 0.007 | - |
219
+ | 2.6543 | 2150 | 0.0066 | - |
220
+ | 2.7160 | 2200 | 0.0077 | - |
221
+ | 2.7778 | 2250 | 0.0066 | - |
222
+ | 2.8395 | 2300 | 0.0052 | - |
223
+ | 2.9012 | 2350 | 0.0055 | - |
224
+ | 2.9630 | 2400 | 0.0043 | - |
225
+ | 3.0247 | 2450 | 0.0032 | - |
226
+ | 3.0864 | 2500 | 0.0028 | - |
227
+ | 3.1481 | 2550 | 0.004 | - |
228
+ | 3.2099 | 2600 | 0.0039 | - |
229
+ | 3.2716 | 2650 | 0.0052 | - |
230
+ | 3.3333 | 2700 | 0.0056 | - |
231
+ | 3.3951 | 2750 | 0.0064 | - |
232
+ | 3.4568 | 2800 | 0.0055 | - |
233
+ | 3.5185 | 2850 | 0.0051 | - |
234
+ | 3.5802 | 2900 | 0.0041 | - |
235
+ | 3.6420 | 2950 | 0.0039 | - |
236
+ | 3.7037 | 3000 | 0.0045 | - |
237
+ | 3.7654 | 3050 | 0.0062 | - |
238
+ | 3.8272 | 3100 | 0.0036 | - |
239
+ | 3.8889 | 3150 | 0.0039 | - |
240
+ | 3.9506 | 3200 | 0.0035 | - |
241
+ | 4.0123 | 3250 | 0.0045 | - |
242
+ | 4.0741 | 3300 | 0.0033 | - |
243
+ | 4.1358 | 3350 | 0.0048 | - |
244
+ | 4.1975 | 3400 | 0.0036 | - |
245
+ | 4.2593 | 3450 | 0.0038 | - |
246
+ | 4.3210 | 3500 | 0.0045 | - |
247
+ | 4.3827 | 3550 | 0.0058 | - |
248
+ | 4.4444 | 3600 | 0.0053 | - |
249
+ | 4.5062 | 3650 | 0.0073 | - |
250
+ | 4.5679 | 3700 | 0.0105 | - |
251
+ | 4.6296 | 3750 | 0.0071 | - |
252
+ | 4.6914 | 3800 | 0.0045 | - |
253
+ | 4.7531 | 3850 | 0.004 | - |
254
+ | 4.8148 | 3900 | 0.0034 | - |
255
+ | 4.8765 | 3950 | 0.0052 | - |
256
+ | 4.9383 | 4000 | 0.0046 | - |
257
+ | 5.0 | 4050 | 0.0035 | - |
258
+ | 5.0617 | 4100 | 0.003 | - |
259
+ | 5.1235 | 4150 | 0.0036 | - |
260
+ | 5.1852 | 4200 | 0.0034 | - |
261
+ | 5.2469 | 4250 | 0.0041 | - |
262
+ | 5.3086 | 4300 | 0.0039 | - |
263
+ | 5.3704 | 4350 | 0.0033 | - |
264
+ | 5.4321 | 4400 | 0.0028 | - |
265
+ | 5.4938 | 4450 | 0.0031 | - |
266
+ | 5.5556 | 4500 | 0.0033 | - |
267
+ | 5.6173 | 4550 | 0.0043 | - |
268
+ | 5.6790 | 4600 | 0.0052 | - |
269
+ | 5.7407 | 4650 | 0.004 | - |
270
+ | 5.8025 | 4700 | 0.0036 | - |
271
+ | 5.8642 | 4750 | 0.0051 | - |
272
+ | 5.9259 | 4800 | 0.0047 | - |
273
+ | 5.9877 | 4850 | 0.0056 | - |
274
+ | 6.0494 | 4900 | 0.0041 | - |
275
+ | 6.1111 | 4950 | 0.0036 | - |
276
+ | 6.1728 | 5000 | 0.0049 | - |
277
+ | 6.2346 | 5050 | 0.004 | - |
278
+ | 6.2963 | 5100 | 0.0035 | - |
279
+ | 6.3580 | 5150 | 0.0041 | - |
280
+ | 6.4198 | 5200 | 0.0025 | - |
281
+ | 6.4815 | 5250 | 0.0027 | - |
282
+ | 6.5432 | 5300 | 0.0042 | - |
283
+ | 6.6049 | 5350 | 0.0036 | - |
284
+ | 6.6667 | 5400 | 0.0041 | - |
285
+ | 6.7284 | 5450 | 0.0036 | - |
286
+ | 6.7901 | 5500 | 0.0044 | - |
287
+ | 6.8519 | 5550 | 0.0034 | - |
288
+ | 6.9136 | 5600 | 0.0041 | - |
289
+ | 6.9753 | 5650 | 0.0036 | - |
290
+ | 7.0370 | 5700 | 0.0034 | - |
291
+ | 7.0988 | 5750 | 0.0034 | - |
292
+ | 7.1605 | 5800 | 0.0039 | - |
293
+ | 7.2222 | 5850 | 0.0036 | - |
294
+ | 7.2840 | 5900 | 0.0041 | - |
295
+ | 7.3457 | 5950 | 0.0031 | - |
296
+ | 7.4074 | 6000 | 0.0032 | - |
297
+ | 7.4691 | 6050 | 0.0133 | - |
298
+ | 7.5309 | 6100 | 0.0154 | - |
299
+ | 7.5926 | 6150 | 0.01 | - |
300
+ | 7.6543 | 6200 | 0.0063 | - |
301
+ | 7.7160 | 6250 | 0.0068 | - |
302
+ | 7.7778 | 6300 | 0.0077 | - |
303
+ | 7.8395 | 6350 | 0.0047 | - |
304
+ | 7.9012 | 6400 | 0.0044 | - |
305
+ | 7.9630 | 6450 | 0.0062 | - |
306
+ | 8.0247 | 6500 | 0.0057 | - |
307
+ | 8.0864 | 6550 | 0.0038 | - |
308
+ | 8.1481 | 6600 | 0.0046 | - |
309
+ | 8.2099 | 6650 | 0.0041 | - |
310
+ | 8.2716 | 6700 | 0.0031 | - |
311
+ | 8.3333 | 6750 | 0.0033 | - |
312
+ | 8.3951 | 6800 | 0.0042 | - |
313
+ | 8.4568 | 6850 | 0.0028 | - |
314
+ | 8.5185 | 6900 | 0.0038 | - |
315
+ | 8.5802 | 6950 | 0.0028 | - |
316
+ | 8.6420 | 7000 | 0.0042 | - |
317
+ | 8.7037 | 7050 | 0.0034 | - |
318
+ | 8.7654 | 7100 | 0.005 | - |
319
+ | 8.8272 | 7150 | 0.0034 | - |
320
+ | 8.8889 | 7200 | 0.0038 | - |
321
+ | 8.9506 | 7250 | 0.003 | - |
322
+ | 9.0123 | 7300 | 0.0031 | - |
323
+ | 9.0741 | 7350 | 0.0025 | - |
324
+ | 9.1358 | 7400 | 0.0042 | - |
325
+ | 9.1975 | 7450 | 0.0034 | - |
326
+ | 9.2593 | 7500 | 0.0053 | - |
327
+ | 9.3210 | 7550 | 0.0041 | - |
328
+ | 9.3827 | 7600 | 0.0041 | - |
329
+ | 9.4444 | 7650 | 0.0045 | - |
330
+ | 9.5062 | 7700 | 0.0027 | - |
331
+ | 9.5679 | 7750 | 0.0044 | - |
332
+ | 9.6296 | 7800 | 0.0047 | - |
333
+ | 9.6914 | 7850 | 0.0028 | - |
334
+ | 9.7531 | 7900 | 0.0027 | - |
335
+ | 9.8148 | 7950 | 0.0025 | - |
336
+ | 9.8765 | 8000 | 0.0036 | - |
337
+ | 9.9383 | 8050 | 0.0033 | - |
338
+ | 10.0 | 8100 | 0.0028 | - |
339
+ | 10.0617 | 8150 | 0.0047 | - |
340
+ | 10.1235 | 8200 | 0.0043 | - |
341
+ | 10.1852 | 8250 | 0.0042 | - |
342
+ | 10.2469 | 8300 | 0.0057 | - |
343
+ | 10.3086 | 8350 | 0.0049 | - |
344
+ | 10.3704 | 8400 | 0.0042 | - |
345
+ | 10.4321 | 8450 | 0.0056 | - |
346
+ | 10.4938 | 8500 | 0.0072 | - |
347
+ | 10.5556 | 8550 | 0.0039 | - |
348
+ | 10.6173 | 8600 | 0.0056 | - |
349
+ | 10.6790 | 8650 | 0.0041 | - |
350
+ | 10.7407 | 8700 | 0.0047 | - |
351
+ | 10.8025 | 8750 | 0.0025 | - |
352
+ | 10.8642 | 8800 | 0.0034 | - |
353
+ | 10.9259 | 8850 | 0.0035 | - |
354
+ | 10.9877 | 8900 | 0.0038 | - |
355
+ | 11.0494 | 8950 | 0.0023 | - |
356
+ | 11.1111 | 9000 | 0.0039 | - |
357
+ | 11.1728 | 9050 | 0.0036 | - |
358
+ | 11.2346 | 9100 | 0.003 | - |
359
+ | 11.2963 | 9150 | 0.0034 | - |
360
+ | 11.3580 | 9200 | 0.0042 | - |
361
+ | 11.4198 | 9250 | 0.0033 | - |
362
+ | 11.4815 | 9300 | 0.0034 | - |
363
+ | 11.5432 | 9350 | 0.0036 | - |
364
+ | 11.6049 | 9400 | 0.0027 | - |
365
+ | 11.6667 | 9450 | 0.0036 | - |
366
+ | 11.7284 | 9500 | 0.0051 | - |
367
+ | 11.7901 | 9550 | 0.0048 | - |
368
+ | 11.8519 | 9600 | 0.0038 | - |
369
+ | 11.9136 | 9650 | 0.0037 | - |
370
+ | 11.9753 | 9700 | 0.0026 | - |
371
+ | 12.0370 | 9750 | 0.0035 | - |
372
+ | 12.0988 | 9800 | 0.0019 | - |
373
+ | 12.1605 | 9850 | 0.0 | - |
374
+ | 12.2222 | 9900 | 0.0 | - |
375
+ | 12.2840 | 9950 | 0.0 | - |
376
+ | 12.3457 | 10000 | 0.0 | - |
377
+ | 12.4074 | 10050 | 0.0 | - |
378
+ | 12.4691 | 10100 | 0.0006 | - |
379
+ | 12.5309 | 10150 | 0.0018 | - |
380
+ | 12.5926 | 10200 | 0.0006 | - |
381
+ | 12.6543 | 10250 | 0.0 | - |
382
+ | 12.7160 | 10300 | 0.0 | - |
383
+ | 12.7778 | 10350 | 0.0003 | - |
384
+ | 12.8395 | 10400 | 0.0038 | - |
385
+ | 12.9012 | 10450 | 0.0025 | - |
386
+ | 12.9630 | 10500 | 0.0025 | - |
387
+ | 13.0247 | 10550 | 0.0024 | - |
388
+ | 13.0864 | 10600 | 0.0029 | - |
389
+ | 13.1481 | 10650 | 0.0034 | - |
390
+ | 13.2099 | 10700 | 0.0037 | - |
391
+ | 13.2716 | 10750 | 0.0039 | - |
392
+ | 13.3333 | 10800 | 0.0027 | - |
393
+ | 13.3951 | 10850 | 0.0023 | - |
394
+ | 13.4568 | 10900 | 0.0008 | - |
395
+ | 13.5185 | 10950 | 0.0 | - |
396
+ | 13.5802 | 11000 | 0.0 | - |
397
+ | 13.6420 | 11050 | 0.0 | - |
398
+ | 13.7037 | 11100 | 0.0 | - |
399
+ | 13.7654 | 11150 | 0.0 | - |
400
+ | 13.8272 | 11200 | 0.0 | - |
401
+ | 13.8889 | 11250 | 0.0 | - |
402
+ | 13.9506 | 11300 | 0.0 | - |
403
+ | 14.0123 | 11350 | 0.0 | - |
404
+ | 14.0741 | 11400 | 0.0 | - |
405
+ | 14.1358 | 11450 | 0.0 | - |
406
+ | 14.1975 | 11500 | 0.0 | - |
407
+ | 14.2593 | 11550 | 0.0 | - |
408
+ | 14.3210 | 11600 | 0.0 | - |
409
+ | 14.3827 | 11650 | 0.0 | - |
410
+ | 14.4444 | 11700 | 0.0 | - |
411
+ | 14.5062 | 11750 | 0.0 | - |
412
+ | 14.5679 | 11800 | 0.0 | - |
413
+ | 14.6296 | 11850 | 0.0 | - |
414
+ | 14.6914 | 11900 | 0.0 | - |
415
+ | 14.7531 | 11950 | 0.0 | - |
416
+ | 14.8148 | 12000 | 0.0 | - |
417
+ | 14.8765 | 12050 | 0.0 | - |
418
+ | 14.9383 | 12100 | 0.0 | - |
419
+ | 15.0 | 12150 | 0.0 | - |
420
+ | 15.0617 | 12200 | 0.0 | - |
421
+ | 15.1235 | 12250 | 0.0 | - |
422
+ | 15.1852 | 12300 | 0.0 | - |
423
+ | 15.2469 | 12350 | 0.0 | - |
424
+ | 15.3086 | 12400 | 0.0 | - |
425
+ | 15.3704 | 12450 | 0.0 | - |
426
+ | 15.4321 | 12500 | 0.0 | - |
427
+ | 15.4938 | 12550 | 0.0 | - |
428
+ | 15.5556 | 12600 | 0.0 | - |
429
+ | 15.6173 | 12650 | 0.0 | - |
430
+ | 15.6790 | 12700 | 0.0 | - |
431
+ | 15.7407 | 12750 | 0.0 | - |
432
+ | 15.8025 | 12800 | 0.0 | - |
433
+ | 15.8642 | 12850 | 0.0 | - |
434
+ | 15.9259 | 12900 | 0.0 | - |
435
+ | 15.9877 | 12950 | 0.0 | - |
436
+ | 16.0494 | 13000 | 0.0 | - |
437
+ | 16.1111 | 13050 | 0.0 | - |
438
+ | 16.1728 | 13100 | 0.0 | - |
439
+ | 16.2346 | 13150 | 0.0 | - |
440
+ | 16.2963 | 13200 | 0.0 | - |
441
+ | 16.3580 | 13250 | 0.0 | - |
442
+ | 16.4198 | 13300 | 0.0 | - |
443
+ | 16.4815 | 13350 | 0.0 | - |
444
+ | 16.5432 | 13400 | 0.0 | - |
445
+ | 16.6049 | 13450 | 0.0 | - |
446
+ | 16.6667 | 13500 | 0.0 | - |
447
+ | 16.7284 | 13550 | 0.0 | - |
448
+ | 16.7901 | 13600 | 0.0 | - |
449
+ | 16.8519 | 13650 | 0.0 | - |
450
+ | 16.9136 | 13700 | 0.0 | - |
451
+ | 16.9753 | 13750 | 0.0 | - |
452
+ | 17.0370 | 13800 | 0.0 | - |
453
+ | 17.0988 | 13850 | 0.0 | - |
454
+ | 17.1605 | 13900 | 0.0 | - |
455
+ | 17.2222 | 13950 | 0.0 | - |
456
+ | 17.2840 | 14000 | 0.0 | - |
457
+ | 17.3457 | 14050 | 0.0 | - |
458
+ | 17.4074 | 14100 | 0.0 | - |
459
+ | 17.4691 | 14150 | 0.0 | - |
460
+ | 17.5309 | 14200 | 0.0 | - |
461
+ | 17.5926 | 14250 | 0.0 | - |
462
+ | 17.6543 | 14300 | 0.0 | - |
463
+ | 17.7160 | 14350 | 0.0 | - |
464
+ | 17.7778 | 14400 | 0.0 | - |
465
+ | 17.8395 | 14450 | 0.0 | - |
466
+ | 17.9012 | 14500 | 0.0 | - |
467
+ | 17.9630 | 14550 | 0.0 | - |
468
+ | 18.0247 | 14600 | 0.0 | - |
469
+ | 18.0864 | 14650 | 0.0 | - |
470
+ | 18.1481 | 14700 | 0.0 | - |
471
+ | 18.2099 | 14750 | 0.0 | - |
472
+ | 18.2716 | 14800 | 0.0 | - |
473
+ | 18.3333 | 14850 | 0.0 | - |
474
+ | 18.3951 | 14900 | 0.0 | - |
475
+ | 18.4568 | 14950 | 0.0 | - |
476
+ | 18.5185 | 15000 | 0.0 | - |
477
+ | 18.5802 | 15050 | 0.0 | - |
478
+ | 18.6420 | 15100 | 0.0 | - |
479
+ | 18.7037 | 15150 | 0.0 | - |
480
+ | 18.7654 | 15200 | 0.0 | - |
481
+ | 18.8272 | 15250 | 0.0 | - |
482
+ | 18.8889 | 15300 | 0.0 | - |
483
+ | 18.9506 | 15350 | 0.0 | - |
484
+ | 19.0123 | 15400 | 0.0 | - |
485
+ | 19.0741 | 15450 | 0.0 | - |
486
+ | 19.1358 | 15500 | 0.0 | - |
487
+ | 19.1975 | 15550 | 0.0 | - |
488
+ | 19.2593 | 15600 | 0.0 | - |
489
+ | 19.3210 | 15650 | 0.0 | - |
490
+ | 19.3827 | 15700 | 0.0 | - |
491
+ | 19.4444 | 15750 | 0.0 | - |
492
+ | 19.5062 | 15800 | 0.0 | - |
493
+ | 19.5679 | 15850 | 0.0 | - |
494
+ | 19.6296 | 15900 | 0.0 | - |
495
+ | 19.6914 | 15950 | 0.0 | - |
496
+ | 19.7531 | 16000 | 0.0 | - |
497
+ | 19.8148 | 16050 | 0.0 | - |
498
+ | 19.8765 | 16100 | 0.0 | - |
499
+ | 19.9383 | 16150 | 0.0 | - |
500
+ | 20.0 | 16200 | 0.0 | - |
501
+ | 20.0617 | 16250 | 0.0 | - |
502
+ | 20.1235 | 16300 | 0.0 | - |
503
+ | 20.1852 | 16350 | 0.0 | - |
504
+ | 20.2469 | 16400 | 0.0 | - |
505
+ | 20.3086 | 16450 | 0.0 | - |
506
+ | 20.3704 | 16500 | 0.0 | - |
507
+ | 20.4321 | 16550 | 0.0 | - |
508
+ | 20.4938 | 16600 | 0.0 | - |
509
+ | 20.5556 | 16650 | 0.0 | - |
510
+ | 20.6173 | 16700 | 0.0 | - |
511
+ | 20.6790 | 16750 | 0.0 | - |
512
+ | 20.7407 | 16800 | 0.0 | - |
513
+ | 20.8025 | 16850 | 0.0 | - |
514
+ | 20.8642 | 16900 | 0.0 | - |
515
+ | 20.9259 | 16950 | 0.0 | - |
516
+ | 20.9877 | 17000 | 0.0 | - |
517
+ | 21.0494 | 17050 | 0.0 | - |
518
+ | 21.1111 | 17100 | 0.0 | - |
519
+ | 21.1728 | 17150 | 0.0 | - |
520
+ | 21.2346 | 17200 | 0.0 | - |
521
+ | 21.2963 | 17250 | 0.0 | - |
522
+ | 21.3580 | 17300 | 0.0 | - |
523
+ | 21.4198 | 17350 | 0.0 | - |
524
+ | 21.4815 | 17400 | 0.0 | - |
525
+ | 21.5432 | 17450 | 0.0 | - |
526
+ | 21.6049 | 17500 | 0.0 | - |
527
+ | 21.6667 | 17550 | 0.0 | - |
528
+ | 21.7284 | 17600 | 0.0 | - |
529
+ | 21.7901 | 17650 | 0.0 | - |
530
+ | 21.8519 | 17700 | 0.0 | - |
531
+ | 21.9136 | 17750 | 0.0 | - |
532
+ | 21.9753 | 17800 | 0.0 | - |
533
+ | 22.0370 | 17850 | 0.0 | - |
534
+ | 22.0988 | 17900 | 0.0 | - |
535
+ | 22.1605 | 17950 | 0.0 | - |
536
+ | 22.2222 | 18000 | 0.0 | - |
537
+ | 22.2840 | 18050 | 0.0 | - |
538
+ | 22.3457 | 18100 | 0.0 | - |
539
+ | 22.4074 | 18150 | 0.0 | - |
540
+ | 22.4691 | 18200 | 0.0 | - |
541
+ | 22.5309 | 18250 | 0.0 | - |
542
+ | 22.5926 | 18300 | 0.0 | - |
543
+ | 22.6543 | 18350 | 0.0 | - |
544
+ | 22.7160 | 18400 | 0.0 | - |
545
+ | 22.7778 | 18450 | 0.0 | - |
546
+ | 22.8395 | 18500 | 0.0 | - |
547
+ | 22.9012 | 18550 | 0.0 | - |
548
+ | 22.9630 | 18600 | 0.0 | - |
549
+ | 23.0247 | 18650 | 0.0 | - |
550
+ | 23.0864 | 18700 | 0.0 | - |
551
+ | 23.1481 | 18750 | 0.0 | - |
552
+ | 23.2099 | 18800 | 0.0 | - |
553
+ | 23.2716 | 18850 | 0.0 | - |
554
+ | 23.3333 | 18900 | 0.0 | - |
555
+ | 23.3951 | 18950 | 0.0 | - |
556
+ | 23.4568 | 19000 | 0.0 | - |
557
+ | 23.5185 | 19050 | 0.0 | - |
558
+ | 23.5802 | 19100 | 0.0 | - |
559
+ | 23.6420 | 19150 | 0.0 | - |
560
+ | 23.7037 | 19200 | 0.0 | - |
561
+ | 23.7654 | 19250 | 0.0 | - |
562
+ | 23.8272 | 19300 | 0.0 | - |
563
+ | 23.8889 | 19350 | 0.0 | - |
564
+ | 23.9506 | 19400 | 0.0 | - |
565
+ | 24.0123 | 19450 | 0.0 | - |
566
+ | 24.0741 | 19500 | 0.0 | - |
567
+ | 24.1358 | 19550 | 0.0 | - |
568
+ | 24.1975 | 19600 | 0.0 | - |
569
+ | 24.2593 | 19650 | 0.0 | - |
570
+ | 24.3210 | 19700 | 0.0 | - |
571
+ | 24.3827 | 19750 | 0.0 | - |
572
+ | 24.4444 | 19800 | 0.0 | - |
573
+ | 24.5062 | 19850 | 0.0 | - |
574
+ | 24.5679 | 19900 | 0.0 | - |
575
+ | 24.6296 | 19950 | 0.0 | - |
576
+ | 24.6914 | 20000 | 0.0 | - |
577
+ | 24.7531 | 20050 | 0.0 | - |
578
+ | 24.8148 | 20100 | 0.0 | - |
579
+ | 24.8765 | 20150 | 0.0 | - |
580
+ | 24.9383 | 20200 | 0.0 | - |
581
+ | 25.0 | 20250 | 0.0 | - |
582
+ | 25.0617 | 20300 | 0.0 | - |
583
+ | 25.1235 | 20350 | 0.0 | - |
584
+ | 25.1852 | 20400 | 0.0 | - |
585
+ | 25.2469 | 20450 | 0.0 | - |
586
+ | 25.3086 | 20500 | 0.0 | - |
587
+ | 25.3704 | 20550 | 0.0 | - |
588
+ | 25.4321 | 20600 | 0.0 | - |
589
+ | 25.4938 | 20650 | 0.0 | - |
590
+ | 25.5556 | 20700 | 0.0 | - |
591
+ | 25.6173 | 20750 | 0.0 | - |
592
+ | 25.6790 | 20800 | 0.0 | - |
593
+ | 25.7407 | 20850 | 0.0 | - |
594
+ | 25.8025 | 20900 | 0.0 | - |
595
+ | 25.8642 | 20950 | 0.0 | - |
596
+ | 25.9259 | 21000 | 0.0 | - |
597
+ | 25.9877 | 21050 | 0.0 | - |
598
+ | 26.0494 | 21100 | 0.0 | - |
599
+ | 26.1111 | 21150 | 0.0004 | - |
600
+ | 26.1728 | 21200 | 0.0 | - |
601
+ | 26.2346 | 21250 | 0.0 | - |
602
+ | 26.2963 | 21300 | 0.0 | - |
603
+ | 26.3580 | 21350 | 0.0 | - |
604
+ | 26.4198 | 21400 | 0.0 | - |
605
+ | 26.4815 | 21450 | 0.0 | - |
606
+ | 26.5432 | 21500 | 0.0 | - |
607
+ | 26.6049 | 21550 | 0.0 | - |
608
+ | 26.6667 | 21600 | 0.0 | - |
609
+ | 26.7284 | 21650 | 0.0 | - |
610
+ | 26.7901 | 21700 | 0.0 | - |
611
+ | 26.8519 | 21750 | 0.0 | - |
612
+ | 26.9136 | 21800 | 0.0 | - |
613
+ | 26.9753 | 21850 | 0.0 | - |
614
+ | 27.0370 | 21900 | 0.0 | - |
615
+ | 27.0988 | 21950 | 0.0 | - |
616
+ | 27.1605 | 22000 | 0.0 | - |
617
+ | 27.2222 | 22050 | 0.0 | - |
618
+ | 27.2840 | 22100 | 0.0 | - |
619
+ | 27.3457 | 22150 | 0.0 | - |
620
+ | 27.4074 | 22200 | 0.0 | - |
621
+ | 27.4691 | 22250 | 0.0 | - |
622
+ | 27.5309 | 22300 | 0.0 | - |
623
+ | 27.5926 | 22350 | 0.0 | - |
624
+ | 27.6543 | 22400 | 0.0 | - |
625
+ | 27.7160 | 22450 | 0.0 | - |
626
+ | 27.7778 | 22500 | 0.0 | - |
627
+ | 27.8395 | 22550 | 0.0 | - |
628
+ | 27.9012 | 22600 | 0.0 | - |
629
+ | 27.9630 | 22650 | 0.0 | - |
630
+ | 28.0247 | 22700 | 0.0 | - |
631
+ | 28.0864 | 22750 | 0.0 | - |
632
+ | 28.1481 | 22800 | 0.0 | - |
633
+ | 28.2099 | 22850 | 0.0 | - |
634
+ | 28.2716 | 22900 | 0.0 | - |
635
+ | 28.3333 | 22950 | 0.0 | - |
636
+ | 28.3951 | 23000 | 0.0 | - |
637
+ | 28.4568 | 23050 | 0.0 | - |
638
+ | 28.5185 | 23100 | 0.0 | - |
639
+ | 28.5802 | 23150 | 0.0 | - |
640
+ | 28.6420 | 23200 | 0.0 | - |
641
+ | 28.7037 | 23250 | 0.0 | - |
642
+ | 28.7654 | 23300 | 0.0 | - |
643
+ | 28.8272 | 23350 | 0.0 | - |
644
+ | 28.8889 | 23400 | 0.0 | - |
645
+ | 28.9506 | 23450 | 0.0 | - |
646
+ | 29.0123 | 23500 | 0.0 | - |
647
+ | 29.0741 | 23550 | 0.0 | - |
648
+ | 29.1358 | 23600 | 0.0 | - |
649
+ | 29.1975 | 23650 | 0.0 | - |
650
+ | 29.2593 | 23700 | 0.0 | - |
651
+ | 29.3210 | 23750 | 0.0 | - |
652
+ | 29.3827 | 23800 | 0.0 | - |
653
+ | 29.4444 | 23850 | 0.0 | - |
654
+ | 29.5062 | 23900 | 0.0 | - |
655
+ | 29.5679 | 23950 | 0.0 | - |
656
+ | 29.6296 | 24000 | 0.0 | - |
657
+ | 29.6914 | 24050 | 0.0 | - |
658
+ | 29.7531 | 24100 | 0.0 | - |
659
+ | 29.8148 | 24150 | 0.0 | - |
660
+ | 29.8765 | 24200 | 0.0 | - |
661
+ | 29.9383 | 24250 | 0.0 | - |
662
+ | 30.0 | 24300 | 0.0 | - |
663
+
664
+ ### Framework Versions
665
+ - Python: 3.10.12
666
+ - SetFit: 1.1.0
667
+ - Sentence Transformers: 3.3.1
668
+ - Transformers: 4.44.2
669
+ - PyTorch: 2.2.0a0+81ea7a4
670
+ - Datasets: 3.2.0
671
+ - Tokenizers: 0.19.1
672
+
673
+ ## Citation
674
+
675
+ ### BibTeX
676
+ ```bibtex
677
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
678
+ doi = {10.48550/ARXIV.2209.11055},
679
+ url = {https://arxiv.org/abs/2209.11055},
680
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
681
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
682
+ title = {Efficient Few-Shot Learning Without Prompts},
683
+ publisher = {arXiv},
684
+ year = {2022},
685
+ copyright = {Creative Commons Attribution 4.0 International}
686
+ }
687
+ ```
688
+
689
+ <!--
690
+ ## Glossary
691
+
692
+ *Clearly define terms in order to be accessible across audiences.*
693
+ -->
694
+
695
+ <!--
696
+ ## Model Card Authors
697
+
698
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
699
+ -->
700
+
701
+ <!--
702
+ ## Model Card Contact
703
+
704
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
705
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test_flat_top",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:200f8ed0b168486f88d886d59b6a9c9b7a97868d62c4c4cce07e303bb5e67ef4
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8fd5698553a7d6a639e905d838d8c554199a8a6a9ca31dc98f765ad3e050529d
3
+ size 68607
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff