File size: 21,719 Bytes
4256323 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 본사직영 달빛유자 수면팩 60ml MinSellAmount (#M)화장품/향수>팩/마스크>수면팩/슬리핑팩 Gmarket > 뷰티 >
화장품/향수 > 팩/마스크 > 수면팩/슬리핑팩
- text: 메디힐 BEST 마스크팩/스킨케어 ~50%세일+사은품 증정 01.티트리 에센셜 10+10+(증정)엔엠에프10 (#M)화장품/향수>팩/마스크>마스크시트
Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 마스크시트
- text: 메디힐 워터마이드 하이드롭 에센셜 마스크 REX 24ml 홈>전체상품;(#M)홈>스킨케어>마스크팩 Naverstore > 화장품/미용
> 마스크/팩 > 마스크시트
- text: 아이오페 스템Ⅲ 앰플 리페어 마스크 1매 17g (+1매 추가증정) 단품없음 × 선택완료 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>시트마스크
Coupang > 뷰티 > 스킨케어 > 마스크/팩
- text: '[한율] 자연을 닮은 시트마스크 1매 x 10 (옵션) 빨간쌀_방어보습 (#M)11st>스킨케어>팩/마스크>마스크시트팩 11st >
뷰티 > 스킨케어 > 팩/마스크'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.510351966873706
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | <ul><li>'[차앤박] CNP 안티포어 블랙헤드 클리어 키트 스트립 3세트(3회분) LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치'</li><li>'[해서린] 포어 클리어 코팩 16매 (화이트/블랙/티트리) 상세 설명 참조 × 선택:티트리 코팩 16매(EH006A)(EH006A) (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>패치/코팩>코팩 Coupang > 뷰티 > 스킨케어 > 마스크/팩 > 패치/코팩 > 코팩'</li><li>'(2+1) 리르 올킬 쏙쏙패치 블랙헤드 코팩 16매입+8매입(총24매) LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치'</li></ul> |
| 0 | <ul><li>'메디앤서 비타 콜라겐 넥 마스크 1box(5매) MinSellAmount (#M)화장품/향수>팩/마스크>마스크시트 Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 마스크시트'</li><li>'스템3 스페셜 2종 기획세트 바이오 컨디셔닝 에센스 하이드로 인핸싱 마스크 (#M)위메프 > 뷰티 > 명품화장품 > 스킨케어 > 스킨/토너 위메프 > 뷰티 > 명품화장품 > 스킨케어 > 스킨/토너'</li><li>'라운드랩 자작나무 수분 패드 80매 홈>5월 행복특가♥;홈>스킨·토너;홈>★BEST 48시간 특가전★;홈>★역대급 1일 특가★;홈>NEW 앰플 4종 런칭 기획전★;홈>최대 67% 기획전;홈>❤뷰티홈캉스;홈>♥8.23~8.31 브랜드 기획전♥;홈>♥9.24~9.30 보습대전♥;홈>💚2021쇼핑페스타💛;홈>5주년 기획전🎁;홈>🧡쭈언니PICK🧡수분多잡기;홈>아듀 2021 연말결산 세일🎄;홈>HELLO 2022 새해 첫 세일👋;홈>설-프라이즈 SALE🎊;홈>스킨케어;홈>고민별>수분·보습;(#M)홈>제품유형별>마스크·패드 Naverstore > 화장품/미용 > 스킨케어 > 스킨/토너'</li></ul> |
| 2 | <ul><li>'마스크 오브 매그너민티 315g - 파워 마스크/페이스 앤 바디 마스크 팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 > 입욕제;위메프 > 뷰티 > 스킨케어 > 팩/마스크;위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 워시오프팩 /필오프팩;위메프 > 뷰티 > 클렌징/필링 > 클렌징;위메프 > 생활·주방·반려동물 > 바디/헤어 > 바디케어/워시/제모 > 입욕제;(#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 마스크시트팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 > 입욕제'</li><li>'로터스 유스 프리저브 레스큐 마스크 30ml 레스큐 마스크 30ml LotteOn > 뷰티 > 마스크/팩 > 워시오프팩 LotteOn > 뷰티 > 마스크/팩 > 워시오프팩'</li><li>'웰라 크레아틴 매직 스트레이트 N 에멀전 건강모 400ml (#M)홈>화장품/미용>헤어스타일링>파마약>스트레이트 Naverstore > 화장품/미용 > 헤어스타일링 > 파마약 > 스트레이트'</li></ul> |
| 1 | <ul><li>'산타마리아노벨라 이드랄리아 마스크 50ml 화이트_F (#M)11st>스킨케어>마사지크림>마사지크림 11st > 뷰티 > 스킨케어 > 마사지크림'</li><li>'라네즈 워터 슬리핑 마스크 EX 70ml - 최근입고 R (#M)11st>스킨케어>팩/마스크>수면팩 11st > 뷰티 > 스킨케어 > 팩/마스크 > 수면팩'</li><li>'[스킨알엑스] [달바] 미스트 세럼 100ml+워터풀 슬리핑팩 1BOX 단품 LotteOn > 뷰티 > 스킨케어 > 미스트 LotteOn > 뷰티 > 스킨케어 > 미스트'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.5104 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt2_test_flat_top_cate")
# Run inference
preds = model("메디힐 워터마이드 하이드롭 에센셜 마스크 REX 24ml 홈>전체상품;(#M)홈>스킨케어>마스크팩 Naverstore > 화장품/미용 > 마스크/팩 > 마스크시트")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 11 | 23.615 | 91 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0 | 50 |
| 1 | 50 |
| 2 | 50 |
| 3 | 50 |
### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032 | 1 | 0.4519 | - |
| 0.1597 | 50 | 0.4406 | - |
| 0.3195 | 100 | 0.4089 | - |
| 0.4792 | 150 | 0.3854 | - |
| 0.6390 | 200 | 0.3414 | - |
| 0.7987 | 250 | 0.2792 | - |
| 0.9585 | 300 | 0.2485 | - |
| 1.1182 | 350 | 0.2268 | - |
| 1.2780 | 400 | 0.1526 | - |
| 1.4377 | 450 | 0.1375 | - |
| 1.5974 | 500 | 0.1239 | - |
| 1.7572 | 550 | 0.123 | - |
| 1.9169 | 600 | 0.1002 | - |
| 2.0767 | 650 | 0.0834 | - |
| 2.2364 | 700 | 0.0828 | - |
| 2.3962 | 750 | 0.0698 | - |
| 2.5559 | 800 | 0.0604 | - |
| 2.7157 | 850 | 0.0281 | - |
| 2.8754 | 900 | 0.0148 | - |
| 3.0351 | 950 | 0.0129 | - |
| 3.1949 | 1000 | 0.0102 | - |
| 3.3546 | 1050 | 0.0083 | - |
| 3.5144 | 1100 | 0.007 | - |
| 3.6741 | 1150 | 0.0042 | - |
| 3.8339 | 1200 | 0.0021 | - |
| 3.9936 | 1250 | 0.0002 | - |
| 4.1534 | 1300 | 0.0001 | - |
| 4.3131 | 1350 | 0.0003 | - |
| 4.4728 | 1400 | 0.0001 | - |
| 4.6326 | 1450 | 0.0001 | - |
| 4.7923 | 1500 | 0.0 | - |
| 4.9521 | 1550 | 0.0 | - |
| 5.1118 | 1600 | 0.0 | - |
| 5.2716 | 1650 | 0.0 | - |
| 5.4313 | 1700 | 0.0 | - |
| 5.5911 | 1750 | 0.0003 | - |
| 5.7508 | 1800 | 0.0 | - |
| 5.9105 | 1850 | 0.0004 | - |
| 6.0703 | 1900 | 0.0005 | - |
| 6.2300 | 1950 | 0.0026 | - |
| 6.3898 | 2000 | 0.0006 | - |
| 6.5495 | 2050 | 0.0002 | - |
| 6.7093 | 2100 | 0.0 | - |
| 6.8690 | 2150 | 0.0002 | - |
| 7.0288 | 2200 | 0.0002 | - |
| 7.1885 | 2250 | 0.0005 | - |
| 7.3482 | 2300 | 0.0006 | - |
| 7.5080 | 2350 | 0.0002 | - |
| 7.6677 | 2400 | 0.0002 | - |
| 7.8275 | 2450 | 0.0001 | - |
| 7.9872 | 2500 | 0.0014 | - |
| 8.1470 | 2550 | 0.0001 | - |
| 8.3067 | 2600 | 0.0 | - |
| 8.4665 | 2650 | 0.0 | - |
| 8.6262 | 2700 | 0.0 | - |
| 8.7859 | 2750 | 0.0 | - |
| 8.9457 | 2800 | 0.0 | - |
| 9.1054 | 2850 | 0.0 | - |
| 9.2652 | 2900 | 0.0004 | - |
| 9.4249 | 2950 | 0.0 | - |
| 9.5847 | 3000 | 0.0 | - |
| 9.7444 | 3050 | 0.0 | - |
| 9.9042 | 3100 | 0.0 | - |
| 10.0639 | 3150 | 0.0 | - |
| 10.2236 | 3200 | 0.0 | - |
| 10.3834 | 3250 | 0.0 | - |
| 10.5431 | 3300 | 0.0 | - |
| 10.7029 | 3350 | 0.0021 | - |
| 10.8626 | 3400 | 0.0002 | - |
| 11.0224 | 3450 | 0.0 | - |
| 11.1821 | 3500 | 0.0001 | - |
| 11.3419 | 3550 | 0.0 | - |
| 11.5016 | 3600 | 0.0 | - |
| 11.6613 | 3650 | 0.0 | - |
| 11.8211 | 3700 | 0.0 | - |
| 11.9808 | 3750 | 0.0 | - |
| 12.1406 | 3800 | 0.0 | - |
| 12.3003 | 3850 | 0.0002 | - |
| 12.4601 | 3900 | 0.0 | - |
| 12.6198 | 3950 | 0.0008 | - |
| 12.7796 | 4000 | 0.0002 | - |
| 12.9393 | 4050 | 0.0002 | - |
| 13.0990 | 4100 | 0.0002 | - |
| 13.2588 | 4150 | 0.0 | - |
| 13.4185 | 4200 | 0.0 | - |
| 13.5783 | 4250 | 0.0 | - |
| 13.7380 | 4300 | 0.0 | - |
| 13.8978 | 4350 | 0.0 | - |
| 14.0575 | 4400 | 0.0 | - |
| 14.2173 | 4450 | 0.0 | - |
| 14.3770 | 4500 | 0.0 | - |
| 14.5367 | 4550 | 0.0 | - |
| 14.6965 | 4600 | 0.0003 | - |
| 14.8562 | 4650 | 0.0 | - |
| 15.0160 | 4700 | 0.0 | - |
| 15.1757 | 4750 | 0.0 | - |
| 15.3355 | 4800 | 0.0 | - |
| 15.4952 | 4850 | 0.0 | - |
| 15.6550 | 4900 | 0.0 | - |
| 15.8147 | 4950 | 0.0 | - |
| 15.9744 | 5000 | 0.0 | - |
| 16.1342 | 5050 | 0.0 | - |
| 16.2939 | 5100 | 0.0 | - |
| 16.4537 | 5150 | 0.0001 | - |
| 16.6134 | 5200 | 0.0002 | - |
| 16.7732 | 5250 | 0.0 | - |
| 16.9329 | 5300 | 0.0002 | - |
| 17.0927 | 5350 | 0.0 | - |
| 17.2524 | 5400 | 0.0 | - |
| 17.4121 | 5450 | 0.0 | - |
| 17.5719 | 5500 | 0.0006 | - |
| 17.7316 | 5550 | 0.0001 | - |
| 17.8914 | 5600 | 0.0001 | - |
| 18.0511 | 5650 | 0.0 | - |
| 18.2109 | 5700 | 0.0 | - |
| 18.3706 | 5750 | 0.0002 | - |
| 18.5304 | 5800 | 0.0 | - |
| 18.6901 | 5850 | 0.0 | - |
| 18.8498 | 5900 | 0.0 | - |
| 19.0096 | 5950 | 0.0 | - |
| 19.1693 | 6000 | 0.0 | - |
| 19.3291 | 6050 | 0.0 | - |
| 19.4888 | 6100 | 0.0 | - |
| 19.6486 | 6150 | 0.0 | - |
| 19.8083 | 6200 | 0.0 | - |
| 19.9681 | 6250 | 0.0 | - |
| 20.1278 | 6300 | 0.0 | - |
| 20.2875 | 6350 | 0.0 | - |
| 20.4473 | 6400 | 0.0 | - |
| 20.6070 | 6450 | 0.0 | - |
| 20.7668 | 6500 | 0.0 | - |
| 20.9265 | 6550 | 0.0 | - |
| 21.0863 | 6600 | 0.0 | - |
| 21.2460 | 6650 | 0.0 | - |
| 21.4058 | 6700 | 0.0 | - |
| 21.5655 | 6750 | 0.0 | - |
| 21.7252 | 6800 | 0.0 | - |
| 21.8850 | 6850 | 0.0 | - |
| 22.0447 | 6900 | 0.0 | - |
| 22.2045 | 6950 | 0.0 | - |
| 22.3642 | 7000 | 0.0 | - |
| 22.5240 | 7050 | 0.0 | - |
| 22.6837 | 7100 | 0.0 | - |
| 22.8435 | 7150 | 0.0 | - |
| 23.0032 | 7200 | 0.0 | - |
| 23.1629 | 7250 | 0.0 | - |
| 23.3227 | 7300 | 0.0 | - |
| 23.4824 | 7350 | 0.0 | - |
| 23.6422 | 7400 | 0.0 | - |
| 23.8019 | 7450 | 0.0 | - |
| 23.9617 | 7500 | 0.0 | - |
| 24.1214 | 7550 | 0.0 | - |
| 24.2812 | 7600 | 0.0 | - |
| 24.4409 | 7650 | 0.0002 | - |
| 24.6006 | 7700 | 0.0 | - |
| 24.7604 | 7750 | 0.0 | - |
| 24.9201 | 7800 | 0.0 | - |
| 25.0799 | 7850 | 0.0 | - |
| 25.2396 | 7900 | 0.0 | - |
| 25.3994 | 7950 | 0.0 | - |
| 25.5591 | 8000 | 0.0 | - |
| 25.7188 | 8050 | 0.0 | - |
| 25.8786 | 8100 | 0.0 | - |
| 26.0383 | 8150 | 0.0 | - |
| 26.1981 | 8200 | 0.0 | - |
| 26.3578 | 8250 | 0.0 | - |
| 26.5176 | 8300 | 0.0 | - |
| 26.6773 | 8350 | 0.0 | - |
| 26.8371 | 8400 | 0.0 | - |
| 26.9968 | 8450 | 0.0 | - |
| 27.1565 | 8500 | 0.0 | - |
| 27.3163 | 8550 | 0.0 | - |
| 27.4760 | 8600 | 0.0 | - |
| 27.6358 | 8650 | 0.0 | - |
| 27.7955 | 8700 | 0.0 | - |
| 27.9553 | 8750 | 0.0 | - |
| 28.1150 | 8800 | 0.0001 | - |
| 28.2748 | 8850 | 0.0 | - |
| 28.4345 | 8900 | 0.0 | - |
| 28.5942 | 8950 | 0.0 | - |
| 28.7540 | 9000 | 0.0 | - |
| 28.9137 | 9050 | 0.0 | - |
| 29.0735 | 9100 | 0.0 | - |
| 29.2332 | 9150 | 0.0 | - |
| 29.3930 | 9200 | 0.0 | - |
| 29.5527 | 9250 | 0.0 | - |
| 29.7125 | 9300 | 0.0 | - |
| 29.8722 | 9350 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |