File size: 21,719 Bytes
4256323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 본사직영 달빛유자 수면팩 60ml MinSellAmount (#M)화장품/향수>팩/마스크>수면팩/슬리핑팩 Gmarket > 뷰티 >
    화장품/향수 > 팩/마스크 > 수면팩/슬리핑팩
- text: 메디힐 BEST 마스크팩/스킨케어 ~50%세일+사은품 증정 01.티트리 에센셜 10+10+(증정)엔엠에프10 (#M)화장품/향수>팩/마스크>마스크시트
    Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 마스크시트
- text: 메디힐 워터마이드 하이드롭 에센셜 마스크 REX 24ml  홈>전체상품;(#M)홈>스킨케어>마스크팩 Naverstore > 화장품/미용
    > 마스크/팩 > 마스크시트
- text: 아이오페 스템Ⅲ 앰플 리페어 마스크 1 17g (+1매 추가증정) 단품없음 × 선택완료 (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>시트마스크
    Coupang > 뷰티 > 스킨케어 > 마스크/팩
- text: '[한율] 자연을 닮은 시트마스크 1매 x 10 (옵션) 빨간쌀_방어보습 (#M)11st>스킨케어>팩/마스크>마스크시트팩 11st >
    뷰티 > 스킨케어 > 팩/마스크'
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.510351966873706
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 4 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3     | <ul><li>'[차앤박] CNP 안티포어 블랙헤드 클리어 키트 스트립 3세트(3회분)  LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치'</li><li>'[해서린] 포어 클리어 코팩 16매 (화이트/블랙/티트리) 상세 설명 참조 × 선택:티트리 코팩 16매(EH006A)(EH006A) (#M)쿠팡 홈>뷰티>스킨케어>마스크/팩>패치/코팩>코팩 Coupang > 뷰티 > 스킨케어 > 마스크/팩 > 패치/코팩 > 코팩'</li><li>'(2+1) 리르 올킬 쏙쏙패치 블랙헤드 코팩 16매입+8매입(총24매)  LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치 LotteOn > 뷰티 > 스킨케어 > 마스크/팩 > 코팩/아이패치'</li></ul>                                                                                                                                                               |
| 0     | <ul><li>'메디앤서 비타 콜라겐 넥 마스크 1box(5매) MinSellAmount (#M)화장품/향수>팩/마스크>마스크시트 Gmarket > 뷰티 > 화장품/향수 > 팩/마스크 > 마스크시트'</li><li>'스템3 스페셜 2종 기획세트 바이오 컨디셔닝 에센스 하이드로 인핸싱 마스크 (#M)위메프 > 뷰티 > 명품화장품 > 스킨케어 > 스킨/토너 위메프 > 뷰티 > 명품화장품 > 스킨케어 > 스킨/토너'</li><li>'라운드랩 자작나무 수분 패드 80매  홈>5월 행복특가♥;홈>스킨·토너;홈>★BEST 48시간 특가전★;홈>★역대급 1일 특가★;홈>NEW 앰플 4종  런칭 기획전★;홈>최대 67% 기획전;홈>❤뷰티홈캉스;홈>♥8.23~8.31 브랜드 기획전♥;홈>♥9.24~9.30 보습대전♥;홈>💚2021쇼핑페스타💛;홈>5주년 기획전🎁;홈>🧡쭈언니PICK🧡수분多잡기;홈>아듀 2021 연말결산 세일🎄;홈>HELLO 2022 새해 첫 세일👋;홈>설-프라이즈 SALE🎊;홈>스킨케어;홈>고민별>수분·보습;(#M)홈>제품유형별>마스크·패드 Naverstore > 화장품/미용 > 스킨케어 > 스킨/토너'</li></ul> |
| 2     | <ul><li>'마스크 오브 매그너민티 315g - 파워 마스크/페이스 앤 바디 마스크 팩  위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 > 입욕제;위메프 > 뷰티 > 스킨케어 > 팩/마스크;위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 워시오프팩 /필오프팩;위메프 > 뷰티 > 클렌징/필링 > 클렌징;위메프 > 생활·주방·반려동물 > 바디/헤어 > 바디케어/워시/제모 > 입욕제;(#M)위메프 > 뷰티 > 스킨케어 > 팩/마스크 > 마스크시트팩 위메프 > 뷰티 > 바디/헤어 > 바디케어/워시/제모 > 입욕제'</li><li>'로터스 유스 프리저브 레스큐 마스크 30ml 레스큐 마스크 30ml LotteOn > 뷰티 > 마스크/팩 > 워시오프팩 LotteOn > 뷰티 > 마스크/팩 > 워시오프팩'</li><li>'웰라 크레아틴 매직 스트레이트 N 에멀전 건강모 400ml  (#M)홈>화장품/미용>헤어스타일링>파마약>스트레이트 Naverstore > 화장품/미용 > 헤어스타일링 > 파마약 > 스트레이트'</li></ul>                                                       |
| 1     | <ul><li>'산타마리아노벨라 이드랄리아 마스크 50ml 화이트_F (#M)11st>스킨케어>마사지크림>마사지크림 11st > 뷰티 > 스킨케어 > 마사지크림'</li><li>'라네즈 워터 슬리핑 마스크 EX 70ml - 최근입고 R  (#M)11st>스킨케어>팩/마스크>수면팩 11st > 뷰티 > 스킨케어 > 팩/마스크 > 수면팩'</li><li>'[스킨알엑스] [달바] 미스트 세럼 100ml+워터풀 슬리핑팩 1BOX 단품 LotteOn > 뷰티 > 스킨케어 > 미스트 LotteOn > 뷰티 > 스킨케어 > 미스트'</li></ul>                                                                                                                                                                                                                                                                                    |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.5104   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt2_test_flat_top_cate")
# Run inference
preds = model("메디힐 워터마이드 하이드롭 에센셜 마스크 REX 24ml  홈>전체상품;(#M)홈>스킨케어>마스크팩 Naverstore > 화장품/미용 > 마스크/팩 > 마스크시트")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 11  | 23.615 | 91  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0032  | 1    | 0.4519        | -               |
| 0.1597  | 50   | 0.4406        | -               |
| 0.3195  | 100  | 0.4089        | -               |
| 0.4792  | 150  | 0.3854        | -               |
| 0.6390  | 200  | 0.3414        | -               |
| 0.7987  | 250  | 0.2792        | -               |
| 0.9585  | 300  | 0.2485        | -               |
| 1.1182  | 350  | 0.2268        | -               |
| 1.2780  | 400  | 0.1526        | -               |
| 1.4377  | 450  | 0.1375        | -               |
| 1.5974  | 500  | 0.1239        | -               |
| 1.7572  | 550  | 0.123         | -               |
| 1.9169  | 600  | 0.1002        | -               |
| 2.0767  | 650  | 0.0834        | -               |
| 2.2364  | 700  | 0.0828        | -               |
| 2.3962  | 750  | 0.0698        | -               |
| 2.5559  | 800  | 0.0604        | -               |
| 2.7157  | 850  | 0.0281        | -               |
| 2.8754  | 900  | 0.0148        | -               |
| 3.0351  | 950  | 0.0129        | -               |
| 3.1949  | 1000 | 0.0102        | -               |
| 3.3546  | 1050 | 0.0083        | -               |
| 3.5144  | 1100 | 0.007         | -               |
| 3.6741  | 1150 | 0.0042        | -               |
| 3.8339  | 1200 | 0.0021        | -               |
| 3.9936  | 1250 | 0.0002        | -               |
| 4.1534  | 1300 | 0.0001        | -               |
| 4.3131  | 1350 | 0.0003        | -               |
| 4.4728  | 1400 | 0.0001        | -               |
| 4.6326  | 1450 | 0.0001        | -               |
| 4.7923  | 1500 | 0.0           | -               |
| 4.9521  | 1550 | 0.0           | -               |
| 5.1118  | 1600 | 0.0           | -               |
| 5.2716  | 1650 | 0.0           | -               |
| 5.4313  | 1700 | 0.0           | -               |
| 5.5911  | 1750 | 0.0003        | -               |
| 5.7508  | 1800 | 0.0           | -               |
| 5.9105  | 1850 | 0.0004        | -               |
| 6.0703  | 1900 | 0.0005        | -               |
| 6.2300  | 1950 | 0.0026        | -               |
| 6.3898  | 2000 | 0.0006        | -               |
| 6.5495  | 2050 | 0.0002        | -               |
| 6.7093  | 2100 | 0.0           | -               |
| 6.8690  | 2150 | 0.0002        | -               |
| 7.0288  | 2200 | 0.0002        | -               |
| 7.1885  | 2250 | 0.0005        | -               |
| 7.3482  | 2300 | 0.0006        | -               |
| 7.5080  | 2350 | 0.0002        | -               |
| 7.6677  | 2400 | 0.0002        | -               |
| 7.8275  | 2450 | 0.0001        | -               |
| 7.9872  | 2500 | 0.0014        | -               |
| 8.1470  | 2550 | 0.0001        | -               |
| 8.3067  | 2600 | 0.0           | -               |
| 8.4665  | 2650 | 0.0           | -               |
| 8.6262  | 2700 | 0.0           | -               |
| 8.7859  | 2750 | 0.0           | -               |
| 8.9457  | 2800 | 0.0           | -               |
| 9.1054  | 2850 | 0.0           | -               |
| 9.2652  | 2900 | 0.0004        | -               |
| 9.4249  | 2950 | 0.0           | -               |
| 9.5847  | 3000 | 0.0           | -               |
| 9.7444  | 3050 | 0.0           | -               |
| 9.9042  | 3100 | 0.0           | -               |
| 10.0639 | 3150 | 0.0           | -               |
| 10.2236 | 3200 | 0.0           | -               |
| 10.3834 | 3250 | 0.0           | -               |
| 10.5431 | 3300 | 0.0           | -               |
| 10.7029 | 3350 | 0.0021        | -               |
| 10.8626 | 3400 | 0.0002        | -               |
| 11.0224 | 3450 | 0.0           | -               |
| 11.1821 | 3500 | 0.0001        | -               |
| 11.3419 | 3550 | 0.0           | -               |
| 11.5016 | 3600 | 0.0           | -               |
| 11.6613 | 3650 | 0.0           | -               |
| 11.8211 | 3700 | 0.0           | -               |
| 11.9808 | 3750 | 0.0           | -               |
| 12.1406 | 3800 | 0.0           | -               |
| 12.3003 | 3850 | 0.0002        | -               |
| 12.4601 | 3900 | 0.0           | -               |
| 12.6198 | 3950 | 0.0008        | -               |
| 12.7796 | 4000 | 0.0002        | -               |
| 12.9393 | 4050 | 0.0002        | -               |
| 13.0990 | 4100 | 0.0002        | -               |
| 13.2588 | 4150 | 0.0           | -               |
| 13.4185 | 4200 | 0.0           | -               |
| 13.5783 | 4250 | 0.0           | -               |
| 13.7380 | 4300 | 0.0           | -               |
| 13.8978 | 4350 | 0.0           | -               |
| 14.0575 | 4400 | 0.0           | -               |
| 14.2173 | 4450 | 0.0           | -               |
| 14.3770 | 4500 | 0.0           | -               |
| 14.5367 | 4550 | 0.0           | -               |
| 14.6965 | 4600 | 0.0003        | -               |
| 14.8562 | 4650 | 0.0           | -               |
| 15.0160 | 4700 | 0.0           | -               |
| 15.1757 | 4750 | 0.0           | -               |
| 15.3355 | 4800 | 0.0           | -               |
| 15.4952 | 4850 | 0.0           | -               |
| 15.6550 | 4900 | 0.0           | -               |
| 15.8147 | 4950 | 0.0           | -               |
| 15.9744 | 5000 | 0.0           | -               |
| 16.1342 | 5050 | 0.0           | -               |
| 16.2939 | 5100 | 0.0           | -               |
| 16.4537 | 5150 | 0.0001        | -               |
| 16.6134 | 5200 | 0.0002        | -               |
| 16.7732 | 5250 | 0.0           | -               |
| 16.9329 | 5300 | 0.0002        | -               |
| 17.0927 | 5350 | 0.0           | -               |
| 17.2524 | 5400 | 0.0           | -               |
| 17.4121 | 5450 | 0.0           | -               |
| 17.5719 | 5500 | 0.0006        | -               |
| 17.7316 | 5550 | 0.0001        | -               |
| 17.8914 | 5600 | 0.0001        | -               |
| 18.0511 | 5650 | 0.0           | -               |
| 18.2109 | 5700 | 0.0           | -               |
| 18.3706 | 5750 | 0.0002        | -               |
| 18.5304 | 5800 | 0.0           | -               |
| 18.6901 | 5850 | 0.0           | -               |
| 18.8498 | 5900 | 0.0           | -               |
| 19.0096 | 5950 | 0.0           | -               |
| 19.1693 | 6000 | 0.0           | -               |
| 19.3291 | 6050 | 0.0           | -               |
| 19.4888 | 6100 | 0.0           | -               |
| 19.6486 | 6150 | 0.0           | -               |
| 19.8083 | 6200 | 0.0           | -               |
| 19.9681 | 6250 | 0.0           | -               |
| 20.1278 | 6300 | 0.0           | -               |
| 20.2875 | 6350 | 0.0           | -               |
| 20.4473 | 6400 | 0.0           | -               |
| 20.6070 | 6450 | 0.0           | -               |
| 20.7668 | 6500 | 0.0           | -               |
| 20.9265 | 6550 | 0.0           | -               |
| 21.0863 | 6600 | 0.0           | -               |
| 21.2460 | 6650 | 0.0           | -               |
| 21.4058 | 6700 | 0.0           | -               |
| 21.5655 | 6750 | 0.0           | -               |
| 21.7252 | 6800 | 0.0           | -               |
| 21.8850 | 6850 | 0.0           | -               |
| 22.0447 | 6900 | 0.0           | -               |
| 22.2045 | 6950 | 0.0           | -               |
| 22.3642 | 7000 | 0.0           | -               |
| 22.5240 | 7050 | 0.0           | -               |
| 22.6837 | 7100 | 0.0           | -               |
| 22.8435 | 7150 | 0.0           | -               |
| 23.0032 | 7200 | 0.0           | -               |
| 23.1629 | 7250 | 0.0           | -               |
| 23.3227 | 7300 | 0.0           | -               |
| 23.4824 | 7350 | 0.0           | -               |
| 23.6422 | 7400 | 0.0           | -               |
| 23.8019 | 7450 | 0.0           | -               |
| 23.9617 | 7500 | 0.0           | -               |
| 24.1214 | 7550 | 0.0           | -               |
| 24.2812 | 7600 | 0.0           | -               |
| 24.4409 | 7650 | 0.0002        | -               |
| 24.6006 | 7700 | 0.0           | -               |
| 24.7604 | 7750 | 0.0           | -               |
| 24.9201 | 7800 | 0.0           | -               |
| 25.0799 | 7850 | 0.0           | -               |
| 25.2396 | 7900 | 0.0           | -               |
| 25.3994 | 7950 | 0.0           | -               |
| 25.5591 | 8000 | 0.0           | -               |
| 25.7188 | 8050 | 0.0           | -               |
| 25.8786 | 8100 | 0.0           | -               |
| 26.0383 | 8150 | 0.0           | -               |
| 26.1981 | 8200 | 0.0           | -               |
| 26.3578 | 8250 | 0.0           | -               |
| 26.5176 | 8300 | 0.0           | -               |
| 26.6773 | 8350 | 0.0           | -               |
| 26.8371 | 8400 | 0.0           | -               |
| 26.9968 | 8450 | 0.0           | -               |
| 27.1565 | 8500 | 0.0           | -               |
| 27.3163 | 8550 | 0.0           | -               |
| 27.4760 | 8600 | 0.0           | -               |
| 27.6358 | 8650 | 0.0           | -               |
| 27.7955 | 8700 | 0.0           | -               |
| 27.9553 | 8750 | 0.0           | -               |
| 28.1150 | 8800 | 0.0001        | -               |
| 28.2748 | 8850 | 0.0           | -               |
| 28.4345 | 8900 | 0.0           | -               |
| 28.5942 | 8950 | 0.0           | -               |
| 28.7540 | 9000 | 0.0           | -               |
| 28.9137 | 9050 | 0.0           | -               |
| 29.0735 | 9100 | 0.0           | -               |
| 29.2332 | 9150 | 0.0           | -               |
| 29.3930 | 9200 | 0.0           | -               |
| 29.5527 | 9250 | 0.0           | -               |
| 29.7125 | 9300 | 0.0           | -               |
| 29.8722 | 9350 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->