File size: 9,856 Bytes
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
c0dda3e
 
 
 
 
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
 
c0dda3e
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0dda3e
 
 
 
 
 
 
 
 
3e77cc5
 
 
 
 
 
c0dda3e
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0dda3e
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10f0c7c
3e77cc5
 
cedea3c
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0dda3e
 
 
 
 
 
 
10f0c7c
 
 
 
 
 
 
 
 
 
 
3e77cc5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[당일출고/백화점정품] 나스 래디언트 크리미 컨실러 6ml / 바닐라 바닐라 에스엠(SM)월드'
- text: '[갤러리아] [수분 피팅 프라이머] 프로텍션 SPF 50 PA+++(한화갤러리아㈜ 광교점) 프로텍션 SPF 50 PA+++ 한화갤러리아(주)'
- text: '[빌리프] [24MS]시카 밤 쿠션 핑크 베이지 기본 주식회사 인터파크커머스'
- text: (백화) 오휘 24RN 얼티밋 커버 메쉬 쿠션 1 383007 옵션없음 펀펀몰
- text: 나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.7155172413793104
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                           |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0   | <ul><li>'콜라겐 비비크림 50g 23호 옵션없음 심완태'</li><li>'본체청정 물광 커버력 좋은 재생 톤업 bb 비비 크림 연 퍼펙트 매직 50ml 옵션없음 에테르'</li><li>'빈토르테 미네랄 CC크림 자외선차단 SPF50+ 30g 옵션없음 토스토'</li></ul>                                     |
| 3.0   | <ul><li>'바비브라운 코렉터 1.4g 피치 비스크 호이컴퍼니'</li><li>'더샘 커버 퍼펙션 트리플 팟 컨실러 5colors 04 톤업 베이지 주식회사 더샘인터내셔날'</li><li>'티핏 tfit 커버 업 프로 컨실러 15G 03 쿨 티핏클래스 주식회사'</li></ul>                                     |
| 1.0   | <ul><li>'누즈 케어 톤업 30ml(SPF50+) 옵션없음 달토끼네멋진마켓'</li><li>'MAC 맥 스트롭 크림 50ml 피치라이트 호이컴퍼니'</li><li>'더후 공진향 미 럭셔리 선베이스 45ml33881531 옵션없음 씨플랩몰'</li></ul>                                                 |
| 5.0   | <ul><li>'에이지투웨니스 벨벳 래스팅 팩트 14g + 14g(리필, SPF50+) 미디움베이지 위브로5'</li><li>'메리쏘드 릴커버 멜팅팩트 본품 11g + 리필 11g +퍼프2개 내추럴베이지(본품+리필)+퍼프2개 주식회사 벨라솔레'</li><li>'퓌 쿠션 스웨이드 15g(SPF50+) 누드스웨이드(03) 강원상회'</li></ul> |
| 4.0   | <ul><li>'쥬리아 루나리스 실키 핏 스킨카바 23호리필내장 옵션없음 에테르노'</li><li>'Almay 프레스드 파우더 올 세트 노 샤인, 마이 베스트 라이트, [100] 0.20 oz 옵션없음 케이피스토어'</li><li>'철벽보습커버 21호 리필내장 쥬얼성분배합 투웨이케익 옵션없음 후니후니003'</li></ul>             |
| 6.0   | <ul><li>'VDL 루미레이어 프라이머 30ml 옵션없음 페퍼파우더'</li><li>'어바웃톤 블러 래스팅 스틱 프라이머 10g AT.블러 래스팅 스틱 프라이머 (주)삐아'</li><li>'로라 메르시에 퓨어 캔버스 프라이머 25ml - 트래블 사이즈 하이드레이팅 고온누리'</li></ul>                              |
| 2.0   | <ul><li>'후 공진향 미 럭셔리 비비 스페셜 세트 267578 옵션없음 펀펀마켓'</li><li>'케이트 리얼 커버 리퀴드 파운데이션 세미 매트 + 스틱컨실러 A 세트 케이트'</li><li>'커버력높은 쿠션팩트 승무원팩트 본품+리필 or 광채CC크림 2종세트 SPF 50+ 뷰디아니'</li></ul>                       |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.7155   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt4_test")
# Run inference
preds = model("나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 5   | 9.7872 | 19  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 19                    |
| 1.0   | 21                    |
| 2.0   | 10                    |
| 3.0   | 19                    |
| 4.0   | 28                    |
| 5.0   | 23                    |
| 6.0   | 21                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0588  | 1    | 0.499         | -               |
| 2.9412  | 50   | 0.3295        | -               |
| 5.8824  | 100  | 0.0469        | -               |
| 8.8235  | 150  | 0.0217        | -               |
| 11.7647 | 200  | 0.0013        | -               |
| 14.7059 | 250  | 0.0001        | -               |
| 17.6471 | 300  | 0.0001        | -               |
| 20.5882 | 350  | 0.0           | -               |
| 23.5294 | 400  | 0.0           | -               |
| 26.4706 | 450  | 0.0           | -               |
| 29.4118 | 500  | 0.0           | -               |
| 32.3529 | 550  | 0.0           | -               |
| 35.2941 | 600  | 0.0           | -               |
| 38.2353 | 650  | 0.0           | -               |
| 41.1765 | 700  | 0.0           | -               |
| 44.1176 | 750  | 0.0           | -               |
| 47.0588 | 800  | 0.0           | -               |
| 50.0    | 850  | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->