File size: 9,856 Bytes
3e77cc5 c0dda3e 3e77cc5 c0dda3e 3e77cc5 c0dda3e 3e77cc5 c0dda3e 3e77cc5 c0dda3e 3e77cc5 10f0c7c 3e77cc5 cedea3c 3e77cc5 c0dda3e 10f0c7c 3e77cc5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: '[당일출고/백화점정품] 나스 래디언트 크리미 컨실러 6ml / 바닐라 바닐라 에스엠(SM)월드'
- text: '[갤러리아] [수분 피팅 프라이머] 프로텍션 SPF 50 PA+++(한화갤러리아㈜ 광교점) 프로텍션 SPF 50 PA+++ 한화갤러리아(주)'
- text: '[빌리프] [24MS]시카 밤 쿠션 핑크 베이지 기본 주식회사 인터파크커머스'
- text: (백화) 오휘 24RN 얼티밋 커버 메쉬 쿠션 1호 383007 옵션없음 펀펀몰
- text: 나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.7155172413793104
name: Accuracy
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 7 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0 | <ul><li>'콜라겐 비비크림 50g 23호 옵션없음 심완태'</li><li>'본체청정 물광 커버력 좋은 재생 톤업 bb 비비 크림 연 퍼펙트 매직 50ml 옵션없음 에테르'</li><li>'빈토르테 미네랄 CC크림 자외선차단 SPF50+ 30g 옵션없음 토스토'</li></ul> |
| 3.0 | <ul><li>'바비브라운 코렉터 1.4g 피치 비스크 호이컴퍼니'</li><li>'더샘 커버 퍼펙션 트리플 팟 컨실러 5colors 04 톤업 베이지 주식회사 더샘인터내셔날'</li><li>'티핏 tfit 커버 업 프로 컨실러 15G 03 쿨 티핏클래스 주식회사'</li></ul> |
| 1.0 | <ul><li>'누즈 케어 톤업 30ml(SPF50+) 옵션없음 달토끼네멋진마켓'</li><li>'MAC 맥 스트롭 크림 50ml 피치라이트 호이컴퍼니'</li><li>'더후 공진향 미 럭셔리 선베이스 45ml33881531 옵션없음 씨플랩몰'</li></ul> |
| 5.0 | <ul><li>'에이지투웨니스 벨벳 래스팅 팩트 14g + 14g(리필, SPF50+) 미디움베이지 위브로5'</li><li>'메리쏘드 릴커버 멜팅팩트 본품 11g + 리필 11g +퍼프2개 내추럴베이지(본품+리필)+퍼프2개 주식회사 벨라솔레'</li><li>'퓌 쿠션 스웨이드 15g(SPF50+) 누드스웨이드(03) 강원상회'</li></ul> |
| 4.0 | <ul><li>'쥬리아 루나리스 실키 핏 스킨카바 23호리필내장 옵션없음 에테르노'</li><li>'Almay 프레스드 파우더 올 세트 노 샤인, 마이 베스트 라이트, [100] 0.20 oz 옵션없음 케이피스토어'</li><li>'철벽보습커버 21호 리필내장 쥬얼성분배합 투웨이케익 옵션없음 후니후니003'</li></ul> |
| 6.0 | <ul><li>'VDL 루미레이어 프라이머 30ml 옵션없음 페퍼파우더'</li><li>'어바웃톤 블러 래스팅 스틱 프라이머 10g AT.블러 래스팅 스틱 프라이머 (주)삐아'</li><li>'로라 메르시에 퓨어 캔버스 프라이머 25ml - 트래블 사이즈 하이드레이팅 고온누리'</li></ul> |
| 2.0 | <ul><li>'후 공진향 미 럭셔리 비비 스페셜 세트 267578 옵션없음 펀펀마켓'</li><li>'케이트 리얼 커버 리퀴드 파운데이션 세미 매트 + 스틱컨실러 A 세트 케이트'</li><li>'커버력높은 쿠션팩트 승무원팩트 본품+리필 or 광채CC크림 2종세트 SPF 50+ 뷰디아니'</li></ul> |
## Evaluation
### Metrics
| Label | Accuracy |
|:--------|:---------|
| **all** | 0.7155 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt4_test")
# Run inference
preds = model("나스 래디언스 프라이머 30ml(SPF35) 옵션없음 블루밍컴퍼니")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 5 | 9.7872 | 19 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 19 |
| 1.0 | 21 |
| 2.0 | 10 |
| 3.0 | 19 |
| 4.0 | 28 |
| 5.0 | 23 |
| 6.0 | 21 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (50, 50)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 60
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0588 | 1 | 0.499 | - |
| 2.9412 | 50 | 0.3295 | - |
| 5.8824 | 100 | 0.0469 | - |
| 8.8235 | 150 | 0.0217 | - |
| 11.7647 | 200 | 0.0013 | - |
| 14.7059 | 250 | 0.0001 | - |
| 17.6471 | 300 | 0.0001 | - |
| 20.5882 | 350 | 0.0 | - |
| 23.5294 | 400 | 0.0 | - |
| 26.4706 | 450 | 0.0 | - |
| 29.4118 | 500 | 0.0 | - |
| 32.3529 | 550 | 0.0 | - |
| 35.2941 | 600 | 0.0 | - |
| 38.2353 | 650 | 0.0 | - |
| 41.1765 | 700 | 0.0 | - |
| 44.1176 | 750 | 0.0 | - |
| 47.0588 | 800 | 0.0 | - |
| 50.0 | 850 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |