mini1013 commited on
Commit
8378b66
·
verified ·
1 Parent(s): b75b7bc

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,237 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - accuracy
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[매장정품] 로우퀘스트 베리어 인핸싱 클렌저 190ml, 1개 옵션없음 타이거커머스'
14
+ - text: 마녀공장 갈락토미 엔자임 필링젤75ML 포장 없음 옵션없음 주식회사 지에스원(GS ONE CO.,LTD.)
15
+ - text: 멘톨비누 바디바 어성초 등드름 수제 목욕 비누 대용량 125g 옵션없음 위컴퍼니
16
+ - text: (트러블 피부 추천) 샵벨르 딥포어젤 100ml x 추가 100ml_엘리시어 20ml 럽스킨(LUVSKIN)
17
+ - text: 바이오뷰텍 바이오옵틱스 아이크린 리드 클리너 30매 1021641 옵션없음 굿데이
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: accuracy
31
+ value: 0.752
32
+ name: Accuracy
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 12 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 5.0 | <ul><li>'셀리맥스 프레시 클렌징오일 150ml, 1개 옵션없음 (주)앱솔브랩'</li><li>'시세이도 티스 딥 오프 오일 320ml 1개 옵션없음 디제이커머스(DJ커머스)'</li><li>'이니스프리 애플씨드 클렌징 오일 150mL 옵션없음 (SJ)이커머스'</li></ul> |
66
+ | 9.0 | <ul><li>'식물나라 제주 탄산수 딥 클렌징 티슈 100매 옵션없음 (주)노아드'</li><li>'셀리맥스 수정화장 패드 30매 옵션없음 원더케이 주식회사'</li><li>'스트라이덱스 센시티브 패드 90매 최신제조정품 유통기한2026년. 옵션없음 셀러N제니스 컴퍼니'</li></ul> |
67
+ | 3.0 | <ul><li>'티나솝 국화비누 조문답례품 장례 49재 수제비누 2구_필요없습니다 티나솝'</li><li>'부케가르니 딥 퍼퓸 비누 베이비 파우더 100g 옵션없음 도매창고'</li><li>'바이오티크 바질앤파슬리 비누 150g 오렌지필150g (주)밸루스'</li></ul> |
68
+ | 10.0 | <ul><li>'[본사제품최신제조] 인셀덤 엑티브 클린업 파우더 90g 폼 클렌징 가루 효소 세안제 옵션없음 미라클'</li><li>'동국제약 센텔리안24 마데카 엔자임 클렌징 파우더 60g x 1개 동국제약 센텔리안'</li><li>'인셀덤 엑티브 클린업 파우더 90g 래디언솜 앰플 아이코스메틱'</li></ul> |
69
+ | 2.0 | <ul><li>'[당일출고] 청미정 알로에 발효 클렌징 밀크 200ml 옵션없음 현영'</li><li>'청미정 알로에 발효 클렌징 밀크 200ml 1개 동의함 블랙마이클'</li><li>'청미정 알로에 발효 클렌징 밀크 200ml 옵션없음 옐로우로켓'</li></ul> |
70
+ | 0.0 | <ul><li>'바이오더마 센시비오 아이 립앤아이리무버 125ml 옵션없음 (주)노아드'</li><li>'오큐소프트 리드 스크럽 플러스+클린징패드120매 옵션없음 아이리움헬스케어'</li><li>'오큐소프트 리드스크럽 플러스 눈꺼풀세정제 눈세척 눈청소 눈기름샘 마이봄샘 다래끼 아이클린 11203414 오큐소프트 리드스크럽플러스 오큐소프트 리드스크럽플러스 메이써니'</li></ul> |
71
+ | 11.0 | <ul><li>'마미레시피 황유자 고마쥬 클렌저 100ml 1개 옵션없음 건강드림'</li><li>'[당일출고] 맥스클리닉 퓨리티톡 브라이트닝 오일 폼 310ml 옵션없음 현영'</li><li>'정케이스 프리메라 바하 버블 필링 클렌저 200ml 옵션없음 맥스베스트'</li></ul> |
72
+ | 8.0 | <ul><li>'칠전몰 녹차 클렌징크림 500g 화장지우기 클렌징로션 클렌징밀크 옵션없음 칠전'</li><li>'MP 크린징 크림 순한 클렌저 화장 지우기 촉촉한 클렌징 노폐물제거 300ml 묵은각질 옵션없음 민트펌킨'</li><li>'위아리턴 딥클렌징크림 300g 남성클렌징폼 옵션없음 위아리턴'</li></ul> |
73
+ | 6.0 | <ul><li>'바이오더마 하이드라비오 H2O 500ml 옵션없음 웨일인블루'</li><li>'바이오더마 센시비오 H2O 500ml 크레알린 옵션없음 주식회사 더블유에스엠와이'</li><li>'바이오더마 센시비오 H2O 500ml 펌프형 옵션없음 조은스마트'</li></ul> |
74
+ | 7.0 | <ul><li>'셀라딕스 아크네 컨트롤 131 젤 클렌저 110ml 1개 옵션없음 (주)이삼오구'</li><li>'코스알엑스 약산성 굿모닝 젤 클렌저 150ml 9792539 옵션없음 에필로리아'</li><li>'보태니컬 키네틱스 퓨리파잉 젤 클렌저 500ml 옵션없음 엔크라이드'</li></ul> |
75
+ | 4.0 | <ul><li>'여행용세트 애경 2호 유럽여행 옵션없음 아빠나이거사줘'</li><li>'동인비 클렌징 2종 미니세트 동인비'</li><li>'아크웰 감초수 피에이치 클렌징 젤 폼 + 버블 프리 젤 2종 세트 아크웰 ACWELL'</li></ul> |
76
+ | 1.0 | <ul><li>'메디필 엑스트라 슈퍼9 플러스 2.0 250ml 듀얼화장솜40매 1022076 옵션없음 메가랜드'</li><li>'셀리맥스 바디 브라이트닝 패드 60매 / 색소 침착 미백 케어 팔꿈치 무릎 바디 브라이트닝 패드 1개 (주)앱솔브랩'</li><li>'메디스코 약초필링 키트 해초 얼굴각질제거 파우더1g솔루션8ml 시카크림 옵션없음 사과컴퍼니'</li></ul> |
77
+
78
+ ## Evaluation
79
+
80
+ ### Metrics
81
+ | Label | Accuracy |
82
+ |:--------|:---------|
83
+ | **all** | 0.752 |
84
+
85
+ ## Uses
86
+
87
+ ### Direct Use for Inference
88
+
89
+ First install the SetFit library:
90
+
91
+ ```bash
92
+ pip install setfit
93
+ ```
94
+
95
+ Then you can load this model and run inference.
96
+
97
+ ```python
98
+ from setfit import SetFitModel
99
+
100
+ # Download from the 🤗 Hub
101
+ model = SetFitModel.from_pretrained("mini1013/master_cate_bt9_test")
102
+ # Run inference
103
+ preds = model("멘톨비누 바디바 어성초 등드름 수제 목욕 비누 대용량 125g 옵션없음 위컴퍼니")
104
+ ```
105
+
106
+ <!--
107
+ ### Downstream Use
108
+
109
+ *List how someone could finetune this model on their own dataset.*
110
+ -->
111
+
112
+ <!--
113
+ ### Out-of-Scope Use
114
+
115
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
116
+ -->
117
+
118
+ <!--
119
+ ## Bias, Risks and Limitations
120
+
121
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
122
+ -->
123
+
124
+ <!--
125
+ ### Recommendations
126
+
127
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
128
+ -->
129
+
130
+ ## Training Details
131
+
132
+ ### Training Set Metrics
133
+ | Training set | Min | Median | Max |
134
+ |:-------------|:----|:-------|:----|
135
+ | Word count | 3 | 9.0359 | 19 |
136
+
137
+ | Label | Training Sample Count |
138
+ |:------|:----------------------|
139
+ | 0.0 | 20 |
140
+ | 1.0 | 27 |
141
+ | 2.0 | 20 |
142
+ | 3.0 | 27 |
143
+ | 4.0 | 15 |
144
+ | 5.0 | 20 |
145
+ | 6.0 | 20 |
146
+ | 7.0 | 18 |
147
+ | 8.0 | 20 |
148
+ | 9.0 | 22 |
149
+ | 10.0 | 17 |
150
+ | 11.0 | 25 |
151
+
152
+ ### Training Hyperparameters
153
+ - batch_size: (512, 512)
154
+ - num_epochs: (40, 40)
155
+ - max_steps: -1
156
+ - sampling_strategy: oversampling
157
+ - num_iterations: 50
158
+ - body_learning_rate: (2e-05, 1e-05)
159
+ - head_learning_rate: 0.01
160
+ - loss: CosineSimilarityLoss
161
+ - distance_metric: cosine_distance
162
+ - margin: 0.25
163
+ - end_to_end: False
164
+ - use_amp: False
165
+ - warmup_proportion: 0.1
166
+ - l2_weight: 0.01
167
+ - seed: 42
168
+ - eval_max_steps: -1
169
+ - load_best_model_at_end: False
170
+
171
+ ### Training Results
172
+ | Epoch | Step | Training Loss | Validation Loss |
173
+ |:-----:|:----:|:-------------:|:---------------:|
174
+ | 0.04 | 1 | 0.4829 | - |
175
+ | 2.0 | 50 | 0.3452 | - |
176
+ | 4.0 | 100 | 0.0756 | - |
177
+ | 6.0 | 150 | 0.0458 | - |
178
+ | 8.0 | 200 | 0.0343 | - |
179
+ | 10.0 | 250 | 0.0208 | - |
180
+ | 12.0 | 300 | 0.0066 | - |
181
+ | 14.0 | 350 | 0.0021 | - |
182
+ | 16.0 | 400 | 0.0005 | - |
183
+ | 18.0 | 450 | 0.0004 | - |
184
+ | 20.0 | 500 | 0.0003 | - |
185
+ | 22.0 | 550 | 0.0003 | - |
186
+ | 24.0 | 600 | 0.0002 | - |
187
+ | 26.0 | 650 | 0.0002 | - |
188
+ | 28.0 | 700 | 0.0002 | - |
189
+ | 30.0 | 750 | 0.0002 | - |
190
+ | 32.0 | 800 | 0.0002 | - |
191
+ | 34.0 | 850 | 0.0002 | - |
192
+ | 36.0 | 900 | 0.0002 | - |
193
+ | 38.0 | 950 | 0.0002 | - |
194
+ | 40.0 | 1000 | 0.0002 | - |
195
+
196
+ ### Framework Versions
197
+ - Python: 3.10.12
198
+ - SetFit: 1.1.0
199
+ - Sentence Transformers: 3.3.1
200
+ - Transformers: 4.44.2
201
+ - PyTorch: 2.2.0a0+81ea7a4
202
+ - Datasets: 3.2.0
203
+ - Tokenizers: 0.19.1
204
+
205
+ ## Citation
206
+
207
+ ### BibTeX
208
+ ```bibtex
209
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
210
+ doi = {10.48550/ARXIV.2209.11055},
211
+ url = {https://arxiv.org/abs/2209.11055},
212
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
213
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
214
+ title = {Efficient Few-Shot Learning Without Prompts},
215
+ publisher = {arXiv},
216
+ year = {2022},
217
+ copyright = {Creative Commons Attribution 4.0 International}
218
+ }
219
+ ```
220
+
221
+ <!--
222
+ ## Glossary
223
+
224
+ *Clearly define terms in order to be accessible across audiences.*
225
+ -->
226
+
227
+ <!--
228
+ ## Model Card Authors
229
+
230
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
231
+ -->
232
+
233
+ <!--
234
+ ## Model Card Contact
235
+
236
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
237
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_bt_test",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.44.2",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.2.0a0+81ea7a4"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d5f99ec0f738a437b6343e10cb10e91b43b3eb46fe48ae4f3d28c62098f07dd3
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6d29114996753a07d114a74bd91459951b28ea9734dc593b462a13a1ea0d153b
3
+ size 74727
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff