Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +542 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,542 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- accuracy
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 에뛰드하우스 실키 퍼프 화장솜 80개입 × 1개 (#M)쿠팡 홈>뷰티>뷰티소품>클렌징소품>화장솜/면봉 Coupang > 뷰티 > 뷰티소품
|
14 |
+
> 화장솜/면봉
|
15 |
+
- text: 트위저맨 슬랜트 트위저 족집게 로즈골드 × 1개 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn >
|
16 |
+
뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프
|
17 |
+
- text: 타투스티커 바디형 문신스티커 헤나 레터링 흉터커버 쇄골 반팔 J type 타투스티커 30종세트 LotteOn > 뷰티 > 뷰티기기/소품
|
18 |
+
> 메이크업소품 > 헤나/타투 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 헤나/타투
|
19 |
+
- text: 더툴랩 215 피니쉬 컨실러 파운데이션 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn >
|
20 |
+
뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬
|
21 |
+
- text: 에뛰드하우스 실키 퍼프 화장솜 80개입 × 1개 (#M)쿠팡 홈>뷰티>뷰티소품>클렌징소품>화장솜/면봉 Coupang > 뷰티 > 뷰티소품
|
22 |
+
> 화장솜/면봉
|
23 |
+
inference: true
|
24 |
+
model-index:
|
25 |
+
- name: SetFit with mini1013/master_domain
|
26 |
+
results:
|
27 |
+
- task:
|
28 |
+
type: text-classification
|
29 |
+
name: Text Classification
|
30 |
+
dataset:
|
31 |
+
name: Unknown
|
32 |
+
type: unknown
|
33 |
+
split: test
|
34 |
+
metrics:
|
35 |
+
- type: accuracy
|
36 |
+
value: 0.8526100307062436
|
37 |
+
name: Accuracy
|
38 |
+
---
|
39 |
+
|
40 |
+
# SetFit with mini1013/master_domain
|
41 |
+
|
42 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
43 |
+
|
44 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
45 |
+
|
46 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
47 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
48 |
+
|
49 |
+
## Model Details
|
50 |
+
|
51 |
+
### Model Description
|
52 |
+
- **Model Type:** SetFit
|
53 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
54 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
55 |
+
- **Maximum Sequence Length:** 512 tokens
|
56 |
+
- **Number of Classes:** 8 classes
|
57 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
58 |
+
<!-- - **Language:** Unknown -->
|
59 |
+
<!-- - **License:** Unknown -->
|
60 |
+
|
61 |
+
### Model Sources
|
62 |
+
|
63 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
64 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
65 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
66 |
+
|
67 |
+
### Model Labels
|
68 |
+
| Label | Examples |
|
69 |
+
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
70 |
+
| 7 | <ul><li>'모델링팩 제조 셀프 피부관리 용품 세트 스파츌러 할로윈분장 미용기구 분홍색 (#M)쿠팡 홈>뷰티>메이크업>베이스 메이크업>베이스 메이크업 세트 Coupang > 뷰티 > 메이크업 > 베이스 메이크업 > 베이스 메이크업 세트'</li><li>'프린시아 공용기 로션통 30g 옵션없음 ssg > 뷰티 > 미용기기/소품 > 거울/용기/기타소품 ssg > 뷰티 > 미용기기/소품 > 아이소품 > 인조속눈썹'</li><li>'[텐바이텐] 입생로랑 유광 레드 프레스티지 파우치 옵션선택_옵션선택 (#M)쿠팡 홈>뷰티>남성화장품>남성 쉐이빙 케어>애프터쉐이브 스킨/로션/크림 Coupang > 뷰티 > 남성화장품 > 남성 쉐이빙 케어 > 애프터쉐이브 스킨/로션/크림'</li></ul> |
|
71 |
+
| 3 | <ul><li>'토니모리 아이래쉬 컬러_동수원점_동수원점 아이래쉬 컬러 (#M)SSG.COM/메이크업/아이메이크업/아이섀도우/글리터/팔레트 ssg > 뷰티 > 메이크업 > 아이메이크업'</li><li>'아리따움 아이돌 래쉬 프리미엄 9호리얼핏 (#M)홈>화장품/미용>뷰티소품>아이소품>속눈썹/속눈썹펌제 Naverstore > 화장품/미용 > 뷰티소품 > 아이소품 > 속눈썹/속눈썹펌제'</li><li>'트위저맨 쁘띠 트위즈 족집게 세트 실버 × 1세트 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 화장품파우치/정리함 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 화장품파우치/정리함'</li></ul> |
|
72 |
+
| 6 | <ul><li>'토니모리 뿌리 볼륨 헤어 집게 (#M)쿠팡 홈>뷰티>헤어>헤어스타일링>헤어왁스 Coupang > 뷰티 > 로드샵 > 헤어 > 헤어스타일링 > 헤어왁스'</li><li>'갤리포니아 미니 갤리포니아 미니 ssg > 뷰티 > 메이크업 > 치크메이크업;ssg > 뷰티 > 메이크업 > 립메이크업 > 립밤 ssg > 뷰티 > 메이크업 > 립메이크업'</li><li>'보다나 두피케어 샴푸 브러쉬 보다나 두피케어 샴푸 브러쉬 홈>미용소품>헤어소품>헤어브러시;(#M)홈>헤어케어>헤어브러쉬>두피용 OLIVEYOUNG > 미용소품 > 헤어/바디 > 헤어브러시'</li></ul> |
|
73 |
+
| 0 | <ul><li>'천연 자초 립밤 만들기 키트 diy 향 선택(8개) 사과+에탄올20ml (#M)홈>비누&립밤&세제 만들기>만들기키트 Naverstore > 화장품/미용 > 색조메이크업 > 립케어'</li></ul> |
|
74 |
+
| 5 | <ul><li>'헤라 블랙 쿠션 제로 비티 핏 퍼프 2입 파워풀한 핏팅력 균일한 밀착 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 퍼프'</li><li>'[티타늄] 더마 MTS 롤러 헤어 두피 540 0.25mm 0.5mm 니들 앰플 티타늄_고급형_0.75mm 홈>화장품/미용>뷰티소품>페이스소품>마사지도구;홈>전체상품;(#M)홈>MTS 도구 Naverstore > 화장품/미용 > 뷰티소품 > 페이스소품 > 마사지도구'</li><li>'헤라 블랙 쿠션 퍼프 x 10개/설화수 쿠션 퍼프 x 10개 헤라블랙쿠션퍼프 x 5개 (#M)홈>화장품/미용>뷰티소품>페이스소품>퍼프 Naverstore > 화장품/미용 > 뷰티소품 > 페이스소품 > 퍼프'</li></ul> |
|
75 |
+
| 1 | <ul><li>'[단품구매] 해피림 아이블랜딩 세트 5종 (10%할인) 235 펜슬 브러쉬 (#M)화장품/미용>뷰티소품>메이크업브러시>아이브러시 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 아이브러시'</li><li>'[안씨브러쉬] 여행용 블러셔, 파우더 브러쉬 - VELVET04 (맑은발색) 홈>라인별>(new) VELVET (Premium);(#M)홈>라인별>VELVET (Premium) Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 페이스브러시'</li><li>'[안씨브러쉬] 스몰 아이섀도, 블렌딩 아이섀도 브러쉬 - Eve316 (#M)홈>용도별>아이메이크업>스몰 - 메인컬러, 중간컬러 Naverstore > 화장품/미용 > 뷰티소품 > 메이크업브러시 > 아이브러시'</li></ul> |
|
76 |
+
| 2 | <ul><li>'바버샵 커트보 미용실 가운 컷트보 드라이보 파마보 염색보 넥셔터 03. 바버샵 그린 스트라이프 홈>전체상품;(#M)홈>커트보,앞치마 Naverstore > 화장품/미용 > 뷰티소품 > 헤어소품 > 기타헤어소품'</li><li>'_ [!BEST_쿠_팡_픽!] _ 롱바디 브러시 각도 조절 가능 등브러쉬 목욕 용품샤워타올목욕용품 _ 5F9AD0 _ 00000EA_goldspo_on mall ★수저픽★ 베이지_JW (#M)쿠팡 홈>생활용품>헤어/바디/세안>샤워/입욕용품>입욕제>바스밤 Coupang > 뷰티 > 바디 > 샤워/입욕용품 > 입욕제'</li><li>'롱바디 브러시 각도 조절 가능 등브러쉬 목욕 용품 SQ+6242EA 밀키 블루 (#M)쿠팡 홈>생활용품>헤어/바디/세안>샤워/입욕용품>입욕제>바스밤 Coupang > 뷰티 > 바디 > 샤워/입욕용품 > 입욕제'</li></ul> |
|
77 |
+
| 4 | <ul><li>'타투바늘 DiRK 더크 카트리지 니들 라이너, 매그넘, 쉐더 반영구 라운드 매그넘_1211 (#M)홈>화장품/미용>뷰티소품>타투 Naverstore > 화장품/미용 > 뷰티소품 > 타투'</li><li>'[스킨알엑스] [타투미] 브레이슬릿 Chandelier Bracelet LotteOn > 뷰티 > 바디케어 > 바디케어세트 LotteOn > 뷰티 > 바디케어 > 바디케어세트'</li><li>'5초눈썹타투스티커5초11쌍 눈썹문신스티커 눈썹타투 눈썹 E14 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬 LotteOn > 뷰티 > 뷰티기기/소품 > 메이크업소품 > 브러쉬'</li></ul> |
|
78 |
+
|
79 |
+
## Evaluation
|
80 |
+
|
81 |
+
### Metrics
|
82 |
+
| Label | Accuracy |
|
83 |
+
|:--------|:---------|
|
84 |
+
| **all** | 0.8526 |
|
85 |
+
|
86 |
+
## Uses
|
87 |
+
|
88 |
+
### Direct Use for Inference
|
89 |
+
|
90 |
+
First install the SetFit library:
|
91 |
+
|
92 |
+
```bash
|
93 |
+
pip install setfit
|
94 |
+
```
|
95 |
+
|
96 |
+
Then you can load this model and run inference.
|
97 |
+
|
98 |
+
```python
|
99 |
+
from setfit import SetFitModel
|
100 |
+
|
101 |
+
# Download from the 🤗 Hub
|
102 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top6_test")
|
103 |
+
# Run inference
|
104 |
+
preds = model("에뛰드하우스 실키 퍼프 화장솜 80개입 × 1개 (#M)쿠팡 홈>뷰티>뷰티소품>클렌징소품>화장솜/면봉 Coupang > 뷰티 > 뷰티소품 > 화장솜/면봉")
|
105 |
+
```
|
106 |
+
|
107 |
+
<!--
|
108 |
+
### Downstream Use
|
109 |
+
|
110 |
+
*List how someone could finetune this model on their own dataset.*
|
111 |
+
-->
|
112 |
+
|
113 |
+
<!--
|
114 |
+
### Out-of-Scope Use
|
115 |
+
|
116 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
117 |
+
-->
|
118 |
+
|
119 |
+
<!--
|
120 |
+
## Bias, Risks and Limitations
|
121 |
+
|
122 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
123 |
+
-->
|
124 |
+
|
125 |
+
<!--
|
126 |
+
### Recommendations
|
127 |
+
|
128 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
129 |
+
-->
|
130 |
+
|
131 |
+
## Training Details
|
132 |
+
|
133 |
+
### Training Set Metrics
|
134 |
+
| Training set | Min | Median | Max |
|
135 |
+
|:-------------|:----|:-------|:----|
|
136 |
+
| Word count | 11 | 20.66 | 66 |
|
137 |
+
|
138 |
+
| Label | Training Sample Count |
|
139 |
+
|:------|:----------------------|
|
140 |
+
| 0 | 1 |
|
141 |
+
| 1 | 50 |
|
142 |
+
| 2 | 50 |
|
143 |
+
| 3 | 50 |
|
144 |
+
| 4 | 50 |
|
145 |
+
| 5 | 50 |
|
146 |
+
| 6 | 49 |
|
147 |
+
| 7 | 50 |
|
148 |
+
|
149 |
+
### Training Hyperparameters
|
150 |
+
- batch_size: (64, 64)
|
151 |
+
- num_epochs: (30, 30)
|
152 |
+
- max_steps: -1
|
153 |
+
- sampling_strategy: oversampling
|
154 |
+
- num_iterations: 100
|
155 |
+
- body_learning_rate: (2e-05, 1e-05)
|
156 |
+
- head_learning_rate: 0.01
|
157 |
+
- loss: CosineSimilarityLoss
|
158 |
+
- distance_metric: cosine_distance
|
159 |
+
- margin: 0.25
|
160 |
+
- end_to_end: False
|
161 |
+
- use_amp: False
|
162 |
+
- warmup_proportion: 0.1
|
163 |
+
- l2_weight: 0.01
|
164 |
+
- seed: 42
|
165 |
+
- eval_max_steps: -1
|
166 |
+
- load_best_model_at_end: False
|
167 |
+
|
168 |
+
### Training Results
|
169 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
170 |
+
|:-------:|:-----:|:-------------:|:---------------:|
|
171 |
+
| 0.0018 | 1 | 0.4049 | - |
|
172 |
+
| 0.0914 | 50 | 0.4426 | - |
|
173 |
+
| 0.1828 | 100 | 0.4367 | - |
|
174 |
+
| 0.2742 | 150 | 0.4123 | - |
|
175 |
+
| 0.3656 | 200 | 0.3927 | - |
|
176 |
+
| 0.4570 | 250 | 0.3631 | - |
|
177 |
+
| 0.5484 | 300 | 0.3095 | - |
|
178 |
+
| 0.6399 | 350 | 0.2743 | - |
|
179 |
+
| 0.7313 | 400 | 0.2444 | - |
|
180 |
+
| 0.8227 | 450 | 0.2342 | - |
|
181 |
+
| 0.9141 | 500 | 0.2188 | - |
|
182 |
+
| 1.0055 | 550 | 0.2089 | - |
|
183 |
+
| 1.0969 | 600 | 0.1942 | - |
|
184 |
+
| 1.1883 | 650 | 0.1751 | - |
|
185 |
+
| 1.2797 | 700 | 0.1564 | - |
|
186 |
+
| 1.3711 | 750 | 0.1525 | - |
|
187 |
+
| 1.4625 | 800 | 0.1342 | - |
|
188 |
+
| 1.5539 | 850 | 0.1252 | - |
|
189 |
+
| 1.6453 | 900 | 0.1124 | - |
|
190 |
+
| 1.7367 | 950 | 0.1022 | - |
|
191 |
+
| 1.8282 | 1000 | 0.0877 | - |
|
192 |
+
| 1.9196 | 1050 | 0.0611 | - |
|
193 |
+
| 2.0110 | 1100 | 0.0447 | - |
|
194 |
+
| 2.1024 | 1150 | 0.0353 | - |
|
195 |
+
| 2.1938 | 1200 | 0.0305 | - |
|
196 |
+
| 2.2852 | 1250 | 0.0321 | - |
|
197 |
+
| 2.3766 | 1300 | 0.0299 | - |
|
198 |
+
| 2.4680 | 1350 | 0.0292 | - |
|
199 |
+
| 2.5594 | 1400 | 0.0307 | - |
|
200 |
+
| 2.6508 | 1450 | 0.0328 | - |
|
201 |
+
| 2.7422 | 1500 | 0.0277 | - |
|
202 |
+
| 2.8336 | 1550 | 0.0226 | - |
|
203 |
+
| 2.9250 | 1600 | 0.0103 | - |
|
204 |
+
| 3.0165 | 1650 | 0.007 | - |
|
205 |
+
| 3.1079 | 1700 | 0.0024 | - |
|
206 |
+
| 3.1993 | 1750 | 0.0012 | - |
|
207 |
+
| 3.2907 | 1800 | 0.0012 | - |
|
208 |
+
| 3.3821 | 1850 | 0.0007 | - |
|
209 |
+
| 3.4735 | 1900 | 0.0007 | - |
|
210 |
+
| 3.5649 | 1950 | 0.0003 | - |
|
211 |
+
| 3.6563 | 2000 | 0.0006 | - |
|
212 |
+
| 3.7477 | 2050 | 0.0009 | - |
|
213 |
+
| 3.8391 | 2100 | 0.0005 | - |
|
214 |
+
| 3.9305 | 2150 | 0.0005 | - |
|
215 |
+
| 4.0219 | 2200 | 0.001 | - |
|
216 |
+
| 4.1133 | 2250 | 0.0044 | - |
|
217 |
+
| 4.2048 | 2300 | 0.004 | - |
|
218 |
+
| 4.2962 | 2350 | 0.0042 | - |
|
219 |
+
| 4.3876 | 2400 | 0.0053 | - |
|
220 |
+
| 4.4790 | 2450 | 0.0061 | - |
|
221 |
+
| 4.5704 | 2500 | 0.008 | - |
|
222 |
+
| 4.6618 | 2550 | 0.0057 | - |
|
223 |
+
| 4.7532 | 2600 | 0.0063 | - |
|
224 |
+
| 4.8446 | 2650 | 0.0064 | - |
|
225 |
+
| 4.9360 | 2700 | 0.0056 | - |
|
226 |
+
| 5.0274 | 2750 | 0.0033 | - |
|
227 |
+
| 5.1188 | 2800 | 0.0017 | - |
|
228 |
+
| 5.2102 | 2850 | 0.0018 | - |
|
229 |
+
| 5.3016 | 2900 | 0.0012 | - |
|
230 |
+
| 5.3931 | 2950 | 0.0007 | - |
|
231 |
+
| 5.4845 | 3000 | 0.0026 | - |
|
232 |
+
| 5.5759 | 3050 | 0.0038 | - |
|
233 |
+
| 5.6673 | 3100 | 0.0019 | - |
|
234 |
+
| 5.7587 | 3150 | 0.0009 | - |
|
235 |
+
| 5.8501 | 3200 | 0.0005 | - |
|
236 |
+
| 5.9415 | 3250 | 0.0002 | - |
|
237 |
+
| 6.0329 | 3300 | 0.0002 | - |
|
238 |
+
| 6.1243 | 3350 | 0.001 | - |
|
239 |
+
| 6.2157 | 3400 | 0.0003 | - |
|
240 |
+
| 6.3071 | 3450 | 0.001 | - |
|
241 |
+
| 6.3985 | 3500 | 0.0003 | - |
|
242 |
+
| 6.4899 | 3550 | 0.0008 | - |
|
243 |
+
| 6.5814 | 3600 | 0.0 | - |
|
244 |
+
| 6.6728 | 3650 | 0.0006 | - |
|
245 |
+
| 6.7642 | 3700 | 0.0005 | - |
|
246 |
+
| 6.8556 | 3750 | 0.0003 | - |
|
247 |
+
| 6.9470 | 3800 | 0.0004 | - |
|
248 |
+
| 7.0384 | 3850 | 0.002 | - |
|
249 |
+
| 7.1298 | 3900 | 0.0012 | - |
|
250 |
+
| 7.2212 | 3950 | 0.0005 | - |
|
251 |
+
| 7.3126 | 4000 | 0.0025 | - |
|
252 |
+
| 7.4040 | 4050 | 0.0029 | - |
|
253 |
+
| 7.4954 | 4100 | 0.0017 | - |
|
254 |
+
| 7.5868 | 4150 | 0.0006 | - |
|
255 |
+
| 7.6782 | 4200 | 0.0002 | - |
|
256 |
+
| 7.7697 | 4250 | 0.0008 | - |
|
257 |
+
| 7.8611 | 4300 | 0.0003 | - |
|
258 |
+
| 7.9525 | 4350 | 0.0005 | - |
|
259 |
+
| 8.0439 | 4400 | 0.0003 | - |
|
260 |
+
| 8.1353 | 4450 | 0.0005 | - |
|
261 |
+
| 8.2267 | 4500 | 0.0012 | - |
|
262 |
+
| 8.3181 | 4550 | 0.0003 | - |
|
263 |
+
| 8.4095 | 4600 | 0.0003 | - |
|
264 |
+
| 8.5009 | 4650 | 0.0008 | - |
|
265 |
+
| 8.5923 | 4700 | 0.001 | - |
|
266 |
+
| 8.6837 | 4750 | 0.0005 | - |
|
267 |
+
| 8.7751 | 4800 | 0.0003 | - |
|
268 |
+
| 8.8665 | 4850 | 0.0005 | - |
|
269 |
+
| 8.9580 | 4900 | 0.0002 | - |
|
270 |
+
| 9.0494 | 4950 | 0.0003 | - |
|
271 |
+
| 9.1408 | 5000 | 0.0004 | - |
|
272 |
+
| 9.2322 | 5050 | 0.0006 | - |
|
273 |
+
| 9.3236 | 5100 | 0.0003 | - |
|
274 |
+
| 9.4150 | 5150 | 0.0003 | - |
|
275 |
+
| 9.5064 | 5200 | 0.0002 | - |
|
276 |
+
| 9.5978 | 5250 | 0.0006 | - |
|
277 |
+
| 9.6892 | 5300 | 0.0008 | - |
|
278 |
+
| 9.7806 | 5350 | 0.0006 | - |
|
279 |
+
| 9.8720 | 5400 | 0.0003 | - |
|
280 |
+
| 9.9634 | 5450 | 0.0005 | - |
|
281 |
+
| 10.0548 | 5500 | 0.0005 | - |
|
282 |
+
| 10.1463 | 5550 | 0.0003 | - |
|
283 |
+
| 10.2377 | 5600 | 0.0005 | - |
|
284 |
+
| 10.3291 | 5650 | 0.0005 | - |
|
285 |
+
| 10.4205 | 5700 | 0.0005 | - |
|
286 |
+
| 10.5119 | 5750 | 0.0005 | - |
|
287 |
+
| 10.6033 | 5800 | 0.0006 | - |
|
288 |
+
| 10.6947 | 5850 | 0.0003 | - |
|
289 |
+
| 10.7861 | 5900 | 0.0002 | - |
|
290 |
+
| 10.8775 | 5950 | 0.0008 | - |
|
291 |
+
| 10.9689 | 6000 | 0.0005 | - |
|
292 |
+
| 11.0603 | 6050 | 0.0002 | - |
|
293 |
+
| 11.1517 | 6100 | 0.0003 | - |
|
294 |
+
| 11.2431 | 6150 | 0.0009 | - |
|
295 |
+
| 11.3346 | 6200 | 0.0006 | - |
|
296 |
+
| 11.4260 | 6250 | 0.0003 | - |
|
297 |
+
| 11.5174 | 6300 | 0.0005 | - |
|
298 |
+
| 11.6088 | 6350 | 0.0002 | - |
|
299 |
+
| 11.7002 | 6400 | 0.0005 | - |
|
300 |
+
| 11.7916 | 6450 | 0.0005 | - |
|
301 |
+
| 11.8830 | 6500 | 0.0 | - |
|
302 |
+
| 11.9744 | 6550 | 0.0008 | - |
|
303 |
+
| 12.0658 | 6600 | 0.0008 | - |
|
304 |
+
| 12.1572 | 6650 | 0.0005 | - |
|
305 |
+
| 12.2486 | 6700 | 0.0003 | - |
|
306 |
+
| 12.3400 | 6750 | 0.0002 | - |
|
307 |
+
| 12.4314 | 6800 | 0.0006 | - |
|
308 |
+
| 12.5229 | 6850 | 0.0003 | - |
|
309 |
+
| 12.6143 | 6900 | 0.0005 | - |
|
310 |
+
| 12.7057 | 6950 | 0.0029 | - |
|
311 |
+
| 12.7971 | 7000 | 0.0013 | - |
|
312 |
+
| 12.8885 | 7050 | 0.0038 | - |
|
313 |
+
| 12.9799 | 7100 | 0.0029 | - |
|
314 |
+
| 13.0713 | 7150 | 0.0011 | - |
|
315 |
+
| 13.1627 | 7200 | 0.0009 | - |
|
316 |
+
| 13.2541 | 7250 | 0.0004 | - |
|
317 |
+
| 13.3455 | 7300 | 0.0002 | - |
|
318 |
+
| 13.4369 | 7350 | 0.0018 | - |
|
319 |
+
| 13.5283 | 7400 | 0.0044 | - |
|
320 |
+
| 13.6197 | 7450 | 0.0007 | - |
|
321 |
+
| 13.7112 | 7500 | 0.0005 | - |
|
322 |
+
| 13.8026 | 7550 | 0.0005 | - |
|
323 |
+
| 13.8940 | 7600 | 0.0006 | - |
|
324 |
+
| 13.9854 | 7650 | 0.0003 | - |
|
325 |
+
| 14.0768 | 7700 | 0.0005 | - |
|
326 |
+
| 14.1682 | 7750 | 0.0003 | - |
|
327 |
+
| 14.2596 | 7800 | 0.0005 | - |
|
328 |
+
| 14.3510 | 7850 | 0.0003 | - |
|
329 |
+
| 14.4424 | 7900 | 0.0003 | - |
|
330 |
+
| 14.5338 | 7950 | 0.0005 | - |
|
331 |
+
| 14.6252 | 8000 | 0.0009 | - |
|
332 |
+
| 14.7166 | 8050 | 0.0 | - |
|
333 |
+
| 14.8080 | 8100 | 0.0005 | - |
|
334 |
+
| 14.8995 | 8150 | 0.0005 | - |
|
335 |
+
| 14.9909 | 8200 | 0.0008 | - |
|
336 |
+
| 15.0823 | 8250 | 0.0003 | - |
|
337 |
+
| 15.1737 | 8300 | 0.0003 | - |
|
338 |
+
| 15.2651 | 8350 | 0.0009 | - |
|
339 |
+
| 15.3565 | 8400 | 0.0003 | - |
|
340 |
+
| 15.4479 | 8450 | 0.0003 | - |
|
341 |
+
| 15.5393 | 8500 | 0.0002 | - |
|
342 |
+
| 15.6307 | 8550 | 0.0003 | - |
|
343 |
+
| 15.7221 | 8600 | 0.0006 | - |
|
344 |
+
| 15.8135 | 8650 | 0.0006 | - |
|
345 |
+
| 15.9049 | 8700 | 0.0006 | - |
|
346 |
+
| 15.9963 | 8750 | 0.0003 | - |
|
347 |
+
| 16.0878 | 8800 | 0.0008 | - |
|
348 |
+
| 16.1792 | 8850 | 0.0003 | - |
|
349 |
+
| 16.2706 | 8900 | 0.0002 | - |
|
350 |
+
| 16.3620 | 8950 | 0.0003 | - |
|
351 |
+
| 16.4534 | 9000 | 0.0008 | - |
|
352 |
+
| 16.5448 | 9050 | 0.0002 | - |
|
353 |
+
| 16.6362 | 9100 | 0.0002 | - |
|
354 |
+
| 16.7276 | 9150 | 0.0009 | - |
|
355 |
+
| 16.8190 | 9200 | 0.0008 | - |
|
356 |
+
| 16.9104 | 9250 | 0.0003 | - |
|
357 |
+
| 17.0018 | 9300 | 0.0002 | - |
|
358 |
+
| 17.0932 | 9350 | 0.0005 | - |
|
359 |
+
| 17.1846 | 9400 | 0.0006 | - |
|
360 |
+
| 17.2761 | 9450 | 0.0005 | - |
|
361 |
+
| 17.3675 | 9500 | 0.0008 | - |
|
362 |
+
| 17.4589 | 9550 | 0.0003 | - |
|
363 |
+
| 17.5503 | 9600 | 0.0005 | - |
|
364 |
+
| 17.6417 | 9650 | 0.0006 | - |
|
365 |
+
| 17.7331 | 9700 | 0.0006 | - |
|
366 |
+
| 17.8245 | 9750 | 0.0005 | - |
|
367 |
+
| 17.9159 | 9800 | 0.0002 | - |
|
368 |
+
| 18.0073 | 9850 | 0.0002 | - |
|
369 |
+
| 18.0987 | 9900 | 0.0003 | - |
|
370 |
+
| 18.1901 | 9950 | 0.0036 | - |
|
371 |
+
| 18.2815 | 10000 | 0.0007 | - |
|
372 |
+
| 18.3729 | 10050 | 0.0008 | - |
|
373 |
+
| 18.4644 | 10100 | 0.0006 | - |
|
374 |
+
| 18.5558 | 10150 | 0.0005 | - |
|
375 |
+
| 18.6472 | 10200 | 0.0003 | - |
|
376 |
+
| 18.7386 | 10250 | 0.0006 | - |
|
377 |
+
| 18.8300 | 10300 | 0.0006 | - |
|
378 |
+
| 18.9214 | 10350 | 0.0003 | - |
|
379 |
+
| 19.0128 | 10400 | 0.0005 | - |
|
380 |
+
| 19.1042 | 10450 | 0.0003 | - |
|
381 |
+
| 19.1956 | 10500 | 0.0005 | - |
|
382 |
+
| 19.2870 | 10550 | 0.0006 | - |
|
383 |
+
| 19.3784 | 10600 | 0.0003 | - |
|
384 |
+
| 19.4698 | 10650 | 0.0003 | - |
|
385 |
+
| 19.5612 | 10700 | 0.0002 | - |
|
386 |
+
| 19.6527 | 10750 | 0.0008 | - |
|
387 |
+
| 19.7441 | 10800 | 0.0006 | - |
|
388 |
+
| 19.8355 | 10850 | 0.0005 | - |
|
389 |
+
| 19.9269 | 10900 | 0.0003 | - |
|
390 |
+
| 20.0183 | 10950 | 0.0005 | - |
|
391 |
+
| 20.1097 | 11000 | 0.0002 | - |
|
392 |
+
| 20.2011 | 11050 | 0.0002 | - |
|
393 |
+
| 20.2925 | 11100 | 0.0006 | - |
|
394 |
+
| 20.3839 | 11150 | 0.0006 | - |
|
395 |
+
| 20.4753 | 11200 | 0.0008 | - |
|
396 |
+
| 20.5667 | 11250 | 0.0003 | - |
|
397 |
+
| 20.6581 | 11300 | 0.0005 | - |
|
398 |
+
| 20.7495 | 11350 | 0.0002 | - |
|
399 |
+
| 20.8410 | 11400 | 0.0003 | - |
|
400 |
+
| 20.9324 | 11450 | 0.0005 | - |
|
401 |
+
| 21.0238 | 11500 | 0.0006 | - |
|
402 |
+
| 21.1152 | 11550 | 0.0002 | - |
|
403 |
+
| 21.2066 | 11600 | 0.0003 | - |
|
404 |
+
| 21.2980 | 11650 | 0.0008 | - |
|
405 |
+
| 21.3894 | 11700 | 0.0008 | - |
|
406 |
+
| 21.4808 | 11750 | 0.0002 | - |
|
407 |
+
| 21.5722 | 11800 | 0.0005 | - |
|
408 |
+
| 21.6636 | 11850 | 0.0005 | - |
|
409 |
+
| 21.7550 | 11900 | 0.0008 | - |
|
410 |
+
| 21.8464 | 11950 | 0.0005 | - |
|
411 |
+
| 21.9378 | 12000 | 0.0 | - |
|
412 |
+
| 22.0293 | 12050 | 0.0003 | - |
|
413 |
+
| 22.1207 | 12100 | 0.0002 | - |
|
414 |
+
| 22.2121 | 12150 | 0.0003 | - |
|
415 |
+
| 22.3035 | 12200 | 0.0005 | - |
|
416 |
+
| 22.3949 | 12250 | 0.0003 | - |
|
417 |
+
| 22.4863 | 12300 | 0.0005 | - |
|
418 |
+
| 22.5777 | 12350 | 0.0008 | - |
|
419 |
+
| 22.6691 | 12400 | 0.0002 | - |
|
420 |
+
| 22.7605 | 12450 | 0.0002 | - |
|
421 |
+
| 22.8519 | 12500 | 0.0006 | - |
|
422 |
+
| 22.9433 | 12550 | 0.0009 | - |
|
423 |
+
| 23.0347 | 12600 | 0.0006 | - |
|
424 |
+
| 23.1261 | 12650 | 0.0006 | - |
|
425 |
+
| 23.2176 | 12700 | 0.0008 | - |
|
426 |
+
| 23.3090 | 12750 | 0.0003 | - |
|
427 |
+
| 23.4004 | 12800 | 0.0005 | - |
|
428 |
+
| 23.4918 | 12850 | 0.0003 | - |
|
429 |
+
| 23.5832 | 12900 | 0.0005 | - |
|
430 |
+
| 23.6746 | 12950 | 0.0006 | - |
|
431 |
+
| 23.7660 | 13000 | 0.0005 | - |
|
432 |
+
| 23.8574 | 13050 | 0.0003 | - |
|
433 |
+
| 23.9488 | 13100 | 0.0002 | - |
|
434 |
+
| 24.0402 | 13150 | 0.0002 | - |
|
435 |
+
| 24.1316 | 13200 | 0.0005 | - |
|
436 |
+
| 24.2230 | 13250 | 0.0008 | - |
|
437 |
+
| 24.3144 | 13300 | 0.0003 | - |
|
438 |
+
| 24.4059 | 13350 | 0.0006 | - |
|
439 |
+
| 24.4973 | 13400 | 0.0008 | - |
|
440 |
+
| 24.5887 | 13450 | 0.0003 | - |
|
441 |
+
| 24.6801 | 13500 | 0.0002 | - |
|
442 |
+
| 24.7715 | 13550 | 0.0002 | - |
|
443 |
+
| 24.8629 | 13600 | 0.0005 | - |
|
444 |
+
| 24.9543 | 13650 | 0.0005 | - |
|
445 |
+
| 25.0457 | 13700 | 0.0006 | - |
|
446 |
+
| 25.1371 | 13750 | 0.0003 | - |
|
447 |
+
| 25.2285 | 13800 | 0.0005 | - |
|
448 |
+
| 25.3199 | 13850 | 0.0 | - |
|
449 |
+
| 25.4113 | 13900 | 0.0005 | - |
|
450 |
+
| 25.5027 | 13950 | 0.0009 | - |
|
451 |
+
| 25.5941 | 14000 | 0.0003 | - |
|
452 |
+
| 25.6856 | 14050 | 0.0003 | - |
|
453 |
+
| 25.7770 | 14100 | 0.0003 | - |
|
454 |
+
| 25.8684 | 14150 | 0.0005 | - |
|
455 |
+
| 25.9598 | 14200 | 0.0003 | - |
|
456 |
+
| 26.0512 | 14250 | 0.0011 | - |
|
457 |
+
| 26.1426 | 14300 | 0.0 | - |
|
458 |
+
| 26.2340 | 14350 | 0.0005 | - |
|
459 |
+
| 26.3254 | 14400 | 0.0014 | - |
|
460 |
+
| 26.4168 | 14450 | 0.0002 | - |
|
461 |
+
| 26.5082 | 14500 | 0.0003 | - |
|
462 |
+
| 26.5996 | 14550 | 0.0003 | - |
|
463 |
+
| 26.6910 | 14600 | 0.0008 | - |
|
464 |
+
| 26.7824 | 14650 | 0.0003 | - |
|
465 |
+
| 26.8739 | 14700 | 0.0 | - |
|
466 |
+
| 26.9653 | 14750 | 0.0003 | - |
|
467 |
+
| 27.0567 | 14800 | 0.0003 | - |
|
468 |
+
| 27.1481 | 14850 | 0.0008 | - |
|
469 |
+
| 27.2395 | 14900 | 0.0005 | - |
|
470 |
+
| 27.3309 | 14950 | 0.0003 | - |
|
471 |
+
| 27.4223 | 15000 | 0.0002 | - |
|
472 |
+
| 27.5137 | 15050 | 0.0006 | - |
|
473 |
+
| 27.6051 | 15100 | 0.0 | - |
|
474 |
+
| 27.6965 | 15150 | 0.0005 | - |
|
475 |
+
| 27.7879 | 15200 | 0.0003 | - |
|
476 |
+
| 27.8793 | 15250 | 0.0003 | - |
|
477 |
+
| 27.9707 | 15300 | 0.0012 | - |
|
478 |
+
| 28.0622 | 15350 | 0.0003 | - |
|
479 |
+
| 28.1536 | 15400 | 0.0006 | - |
|
480 |
+
| 28.2450 | 15450 | 0.0005 | - |
|
481 |
+
| 28.3364 | 15500 | 0.0003 | - |
|
482 |
+
| 28.4278 | 15550 | 0.0002 | - |
|
483 |
+
| 28.5192 | 15600 | 0.0011 | - |
|
484 |
+
| 28.6106 | 15650 | 0.0003 | - |
|
485 |
+
| 28.7020 | 15700 | 0.0002 | - |
|
486 |
+
| 28.7934 | 15750 | 0.0005 | - |
|
487 |
+
| 28.8848 | 15800 | 0.0005 | - |
|
488 |
+
| 28.9762 | 15850 | 0.0006 | - |
|
489 |
+
| 29.0676 | 15900 | 0.0 | - |
|
490 |
+
| 29.1590 | 15950 | 0.0 | - |
|
491 |
+
| 29.2505 | 16000 | 0.0002 | - |
|
492 |
+
| 29.3419 | 16050 | 0.0003 | - |
|
493 |
+
| 29.4333 | 16100 | 0.0008 | - |
|
494 |
+
| 29.5247 | 16150 | 0.0006 | - |
|
495 |
+
| 29.6161 | 16200 | 0.0005 | - |
|
496 |
+
| 29.7075 | 16250 | 0.0005 | - |
|
497 |
+
| 29.7989 | 16300 | 0.0008 | - |
|
498 |
+
| 29.8903 | 16350 | 0.0006 | - |
|
499 |
+
| 29.9817 | 16400 | 0.0005 | - |
|
500 |
+
|
501 |
+
### Framework Versions
|
502 |
+
- Python: 3.10.12
|
503 |
+
- SetFit: 1.1.0
|
504 |
+
- Sentence Transformers: 3.3.1
|
505 |
+
- Transformers: 4.44.2
|
506 |
+
- PyTorch: 2.2.0a0+81ea7a4
|
507 |
+
- Datasets: 3.2.0
|
508 |
+
- Tokenizers: 0.19.1
|
509 |
+
|
510 |
+
## Citation
|
511 |
+
|
512 |
+
### BibTeX
|
513 |
+
```bibtex
|
514 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
515 |
+
doi = {10.48550/ARXIV.2209.11055},
|
516 |
+
url = {https://arxiv.org/abs/2209.11055},
|
517 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
518 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
519 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
520 |
+
publisher = {arXiv},
|
521 |
+
year = {2022},
|
522 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
523 |
+
}
|
524 |
+
```
|
525 |
+
|
526 |
+
<!--
|
527 |
+
## Glossary
|
528 |
+
|
529 |
+
*Clearly define terms in order to be accessible across audiences.*
|
530 |
+
-->
|
531 |
+
|
532 |
+
<!--
|
533 |
+
## Model Card Authors
|
534 |
+
|
535 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
536 |
+
-->
|
537 |
+
|
538 |
+
<!--
|
539 |
+
## Model Card Contact
|
540 |
+
|
541 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
542 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_bt_test_flat_top",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.44.2",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.3.1",
|
4 |
+
"transformers": "4.44.2",
|
5 |
+
"pytorch": "2.2.0a0+81ea7a4"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": "cosine"
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a6982a411ca2a03ee58126b313c3c3db456717e7e9932c6b04adec08d59bedf5
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f2f59513fe76e8526fd09a0b4e39126f0cfcc48a683fb9e7f058c89340af3347
|
3 |
+
size 50119
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|