File size: 25,722 Bytes
6432d6e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 엔프라니 옴므 선블록 썬크림 남성용 선크림  (#M)화장품/미용>남성화장품>선크림 Naverstore > 화장품/미용 > 남성화장품
    > 선크림
- text: (시세이도)(시세이도)(특별한정) 파란자차 50ml 세트(+파란자차 정품 용량) NEW 파란자차 (정품) (#M)화장품/향수>선케어>선크림
    Gmarket > 뷰티 > 화장품/향수 > 선케어 > 선크림
- text: 에스쁘아 워터스플래쉬 선크림 SPF50+ PA+++ 60ml × 5 (#M)쿠팡 홈>뷰티>스킨케어>선케어/태닝>선케어>선블록/선크림/선로션
    Coupang > 뷰티 > 스킨케어 > 선케어/태닝 > 선케어 > 선블록/선크림/선로션
- text: 이니스프리 인텐시브 롱래스팅 선스크린50ml 50ml × 6 LotteOn > 뷰티 > 남성화장품 > 스킨 LotteOn > 뷰티
    > 남성화장품 > 스킨
- text: 에스트라 리제덤 RX  듀얼 선크림 +BB 50ml 병원전용제품  (#M)SSG.COM/메이크업/베이스메이크업/BB/CC크림 ssg
    > 뷰티 > 메이크업 > 베이스메이크업 > BB/CC크림
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: accuracy
      value: 0.4902962206332993
      name: Accuracy
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 5 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|:------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2     | <ul><li>'이니스프리 노세범 선쿠션 SPF50+ PA++++ 14g × 2개 (#M)위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파우더/팩트 위메프 > 뷰티 > 메이크업 > 베이스 메이크업 > 파우더/팩트'</li><li>'스킨 세팅 톤업 선 쿠션(리필포함) + 추가구성품 톤업 선 쿠션 LotteOn > 백화점 > 뷰티 > 상단 배너 (Mobile) LotteOn > 뷰티 > 메이크업 > 베이스메이크업 > 쿠션/팩트'</li><li>'이니스프리 노세범 선쿠션 리필 14g 1 +1  (#M)쿠팡 홈>뷰티>스킨케어>선케어/태닝>선케어>선스틱 Coupang > 뷰티 > 로드샵 > 스킨케어 > 선케어/태닝'</li></ul>                                                                                                                                                                                                                                                                                                                               |
| 1     | <ul><li>'SUNDANCE 썬댄스 햇빛 차단+태닝 선스프레이 LSF 50, 200ml  ssg > 뷰티 > 스킨케어 > 선케어 > 선스프레이 ssg > 뷰티 > 스킨케어 > 선케어 > 선스프레이'</li><li>'리더스 여름자외선 썬버디 올 오버 선 스프레이 180ml MinSellAmount (#M)화장품/향수>선케어>선스프레이 Gmarket > 뷰티 > 화장품/향수 > 선케어 > 선스프레이'</li><li>'온더바디 헬로키티 에코 썬 스프레이 120ml+120ml 기획세트  (#M)홈>화장품/미용>선케어>선케어세트 Naverstore > 화장품/미용 > 선케어 > 선케어세트'</li></ul>                                                                                                                                                                                                                                                                                                                                               |
| 0     | <ul><li>'[피지오겔] [정가 85,000원]  레드 수딩 AI 에어리 썬스틱 1+1 특별기획  롯데홈쇼핑 > 뷰티 > 남성화장품 LotteOn > 뷰티 > 남성화장품 > 선크림'</li><li>'[빌리프][2106] 해피 보 이지워시 선스틱 18g 세트(타임스퀘어점패션관)  (#M)11st>선케어>선밤>선밤 11st > 뷰티 > 선케어 > 선밤 > 선밤'</li><li>'피지오겔 레드 수딩 AI 에어리 썬스틱 7g 1+1(2개)  (#M)홈>스킨케어>선케어 HMALL > 뷰티 > 스킨케어 > 선케어'</li></ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| 4     | <ul><li>'오스트레일리안골드 헴프네이션 오리지널 탠 익스텐더 바디로션 535ml  (#M)SSG.COM/스킨케어/선케어/태닝 ssg > 뷰티 > 스킨케어 > 선케어 > 태닝'</li><li>'수딩앤모이스처 알로에베라92%수딩젤300ml  (#M)홈>화장품/미용>바디케어>바디로션 Naverstore > 화장품/미용 > 바디케어 > 바디로션'</li><li>'세인트 트로페즈 셀프 탠 익스프레스 어드밴스드 브론징 무스 200ml  (#M)SSG.COM/스킨케어/선케어/태닝 ssg > 뷰티 > 스킨케어 > 선케어 > 태닝'</li></ul>                                                                                                                                                                                                                                                                                                                                                                                   |
| 3     | <ul><li>'[맥퀸뉴욕] 1+ 1 UV 데일리 모이스처(수분) 선크림 1+1 UV 데일리 모이스처 선크림 (#M)SSG.COM/메이크업/립메이크업/립글로스 ssg > 뷰티 > 메이크업 > 아이메이크업 > 아이라이너'</li><li>'[공식] 더마비 10주년 바디로션/기획세트/멀티오일/프레쉬/크림/워시 1+1 S11.(애브리데이) 대용량 선블록 200ml×2개_S1.튜브견본(랜덤) 쇼킹딜 홈;쇼킹딜 홈>뷰티>바디/향수>바디케어;11st>뷰티>바디/향수>바디케어;11st>바디케어>바디로션>바디로션;11st > 뷰티 > 바디케어 > 바디로션 11st Hour Event > 패션/뷰티 > 뷰티 > 바디/향수 > 바디케어'</li><li>'[20%찜+T11%+묶음+당일 ] 롬앤 11번가 런칭! 모든 취향 취급 중! 밀크 그로서리 외 BEST 1+1 옵션31. 제로 선 클린 단품_01 프레쉬 쇼킹딜 홈>뷰티>선케어/메이크업>립/치크메이크업;11st>메이크업>립메이크업>립틴트;11st>뷰티>선케어/메이크업>립/치크메이크업;11st>뷰티>선케어/메이크업>아이메이크업;11st>메이크업>아이메이크업>마스카라;11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 립/치크메이크업 11st Hour Event > 패션/뷰티 > 뷰티 > 선케어/메이크업 > 아이메이크업'</li></ul> |

## Evaluation

### Metrics
| Label   | Accuracy |
|:--------|:---------|
| **all** | 0.4903   |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt_top8_test")
# Run inference
preds = model("엔프라니 옴므 선블록 썬크림 남성용 선크림  (#M)화장품/미용>남성화장품>선크림 Naverstore > 화장품/미용 > 남성화장품 > 선크림")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 11  | 21.656 | 72  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0     | 50                    |
| 1     | 50                    |
| 2     | 50                    |
| 3     | 50                    |
| 4     | 50                    |

### Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step  | Training Loss | Validation Loss |
|:-------:|:-----:|:-------------:|:---------------:|
| 0.0026  | 1     | 0.4513        | -               |
| 0.1279  | 50    | 0.4435        | -               |
| 0.2558  | 100   | 0.4063        | -               |
| 0.3836  | 150   | 0.3413        | -               |
| 0.5115  | 200   | 0.2997        | -               |
| 0.6394  | 250   | 0.2434        | -               |
| 0.7673  | 300   | 0.1724        | -               |
| 0.8951  | 350   | 0.1334        | -               |
| 1.0230  | 400   | 0.1078        | -               |
| 1.1509  | 450   | 0.0997        | -               |
| 1.2788  | 500   | 0.0937        | -               |
| 1.4066  | 550   | 0.0933        | -               |
| 1.5345  | 600   | 0.0909        | -               |
| 1.6624  | 650   | 0.0897        | -               |
| 1.7903  | 700   | 0.0842        | -               |
| 1.9182  | 750   | 0.0741        | -               |
| 2.0460  | 800   | 0.0764        | -               |
| 2.1739  | 850   | 0.0745        | -               |
| 2.3018  | 900   | 0.0733        | -               |
| 2.4297  | 950   | 0.0748        | -               |
| 2.5575  | 1000  | 0.0718        | -               |
| 2.6854  | 1050  | 0.0568        | -               |
| 2.8133  | 1100  | 0.0415        | -               |
| 2.9412  | 1150  | 0.0256        | -               |
| 3.0691  | 1200  | 0.0233        | -               |
| 3.1969  | 1250  | 0.0128        | -               |
| 3.3248  | 1300  | 0.0088        | -               |
| 3.4527  | 1350  | 0.0066        | -               |
| 3.5806  | 1400  | 0.0058        | -               |
| 3.7084  | 1450  | 0.006         | -               |
| 3.8363  | 1500  | 0.0058        | -               |
| 3.9642  | 1550  | 0.0039        | -               |
| 4.0921  | 1600  | 0.0043        | -               |
| 4.2199  | 1650  | 0.0033        | -               |
| 4.3478  | 1700  | 0.0059        | -               |
| 4.4757  | 1750  | 0.0065        | -               |
| 4.6036  | 1800  | 0.0061        | -               |
| 4.7315  | 1850  | 0.0052        | -               |
| 4.8593  | 1900  | 0.0054        | -               |
| 4.9872  | 1950  | 0.0043        | -               |
| 5.1151  | 2000  | 0.0064        | -               |
| 5.2430  | 2050  | 0.0042        | -               |
| 5.3708  | 2100  | 0.0046        | -               |
| 5.4987  | 2150  | 0.0038        | -               |
| 5.6266  | 2200  | 0.0031        | -               |
| 5.7545  | 2250  | 0.0021        | -               |
| 5.8824  | 2300  | 0.0006        | -               |
| 6.0102  | 2350  | 0.0003        | -               |
| 6.1381  | 2400  | 0.0001        | -               |
| 6.2660  | 2450  | 0.0002        | -               |
| 6.3939  | 2500  | 0.0           | -               |
| 6.5217  | 2550  | 0.0           | -               |
| 6.6496  | 2600  | 0.0001        | -               |
| 6.7775  | 2650  | 0.0           | -               |
| 6.9054  | 2700  | 0.0           | -               |
| 7.0332  | 2750  | 0.0           | -               |
| 7.1611  | 2800  | 0.0           | -               |
| 7.2890  | 2850  | 0.0           | -               |
| 7.4169  | 2900  | 0.0           | -               |
| 7.5448  | 2950  | 0.0           | -               |
| 7.6726  | 3000  | 0.0           | -               |
| 7.8005  | 3050  | 0.0           | -               |
| 7.9284  | 3100  | 0.0           | -               |
| 8.0563  | 3150  | 0.0           | -               |
| 8.1841  | 3200  | 0.0           | -               |
| 8.3120  | 3250  | 0.0           | -               |
| 8.4399  | 3300  | 0.0           | -               |
| 8.5678  | 3350  | 0.0           | -               |
| 8.6957  | 3400  | 0.0           | -               |
| 8.8235  | 3450  | 0.0           | -               |
| 8.9514  | 3500  | 0.0           | -               |
| 9.0793  | 3550  | 0.0           | -               |
| 9.2072  | 3600  | 0.0           | -               |
| 9.3350  | 3650  | 0.0           | -               |
| 9.4629  | 3700  | 0.0           | -               |
| 9.5908  | 3750  | 0.0           | -               |
| 9.7187  | 3800  | 0.0           | -               |
| 9.8465  | 3850  | 0.0           | -               |
| 9.9744  | 3900  | 0.0           | -               |
| 10.1023 | 3950  | 0.0           | -               |
| 10.2302 | 4000  | 0.0           | -               |
| 10.3581 | 4050  | 0.0           | -               |
| 10.4859 | 4100  | 0.0           | -               |
| 10.6138 | 4150  | 0.0           | -               |
| 10.7417 | 4200  | 0.0           | -               |
| 10.8696 | 4250  | 0.0           | -               |
| 10.9974 | 4300  | 0.0           | -               |
| 11.1253 | 4350  | 0.0           | -               |
| 11.2532 | 4400  | 0.0           | -               |
| 11.3811 | 4450  | 0.0           | -               |
| 11.5090 | 4500  | 0.0           | -               |
| 11.6368 | 4550  | 0.0           | -               |
| 11.7647 | 4600  | 0.0           | -               |
| 11.8926 | 4650  | 0.0           | -               |
| 12.0205 | 4700  | 0.0           | -               |
| 12.1483 | 4750  | 0.0           | -               |
| 12.2762 | 4800  | 0.0           | -               |
| 12.4041 | 4850  | 0.0           | -               |
| 12.5320 | 4900  | 0.0           | -               |
| 12.6598 | 4950  | 0.0           | -               |
| 12.7877 | 5000  | 0.0           | -               |
| 12.9156 | 5050  | 0.0           | -               |
| 13.0435 | 5100  | 0.0           | -               |
| 13.1714 | 5150  | 0.0           | -               |
| 13.2992 | 5200  | 0.0           | -               |
| 13.4271 | 5250  | 0.0           | -               |
| 13.5550 | 5300  | 0.0           | -               |
| 13.6829 | 5350  | 0.0           | -               |
| 13.8107 | 5400  | 0.0           | -               |
| 13.9386 | 5450  | 0.0           | -               |
| 14.0665 | 5500  | 0.0           | -               |
| 14.1944 | 5550  | 0.0           | -               |
| 14.3223 | 5600  | 0.0           | -               |
| 14.4501 | 5650  | 0.0           | -               |
| 14.5780 | 5700  | 0.0           | -               |
| 14.7059 | 5750  | 0.0           | -               |
| 14.8338 | 5800  | 0.0           | -               |
| 14.9616 | 5850  | 0.0           | -               |
| 15.0895 | 5900  | 0.0           | -               |
| 15.2174 | 5950  | 0.0           | -               |
| 15.3453 | 6000  | 0.0           | -               |
| 15.4731 | 6050  | 0.0           | -               |
| 15.6010 | 6100  | 0.0           | -               |
| 15.7289 | 6150  | 0.0           | -               |
| 15.8568 | 6200  | 0.0           | -               |
| 15.9847 | 6250  | 0.0           | -               |
| 16.1125 | 6300  | 0.0           | -               |
| 16.2404 | 6350  | 0.0           | -               |
| 16.3683 | 6400  | 0.0           | -               |
| 16.4962 | 6450  | 0.0           | -               |
| 16.6240 | 6500  | 0.0           | -               |
| 16.7519 | 6550  | 0.0           | -               |
| 16.8798 | 6600  | 0.0           | -               |
| 17.0077 | 6650  | 0.0           | -               |
| 17.1355 | 6700  | 0.0           | -               |
| 17.2634 | 6750  | 0.0           | -               |
| 17.3913 | 6800  | 0.0           | -               |
| 17.5192 | 6850  | 0.0           | -               |
| 17.6471 | 6900  | 0.0           | -               |
| 17.7749 | 6950  | 0.0           | -               |
| 17.9028 | 7000  | 0.0           | -               |
| 18.0307 | 7050  | 0.0           | -               |
| 18.1586 | 7100  | 0.0           | -               |
| 18.2864 | 7150  | 0.0           | -               |
| 18.4143 | 7200  | 0.0           | -               |
| 18.5422 | 7250  | 0.0           | -               |
| 18.6701 | 7300  | 0.0           | -               |
| 18.7980 | 7350  | 0.0           | -               |
| 18.9258 | 7400  | 0.0           | -               |
| 19.0537 | 7450  | 0.0           | -               |
| 19.1816 | 7500  | 0.0           | -               |
| 19.3095 | 7550  | 0.0           | -               |
| 19.4373 | 7600  | 0.0           | -               |
| 19.5652 | 7650  | 0.0           | -               |
| 19.6931 | 7700  | 0.0           | -               |
| 19.8210 | 7750  | 0.0           | -               |
| 19.9488 | 7800  | 0.0           | -               |
| 20.0767 | 7850  | 0.0           | -               |
| 20.2046 | 7900  | 0.0           | -               |
| 20.3325 | 7950  | 0.0           | -               |
| 20.4604 | 8000  | 0.0           | -               |
| 20.5882 | 8050  | 0.0           | -               |
| 20.7161 | 8100  | 0.0           | -               |
| 20.8440 | 8150  | 0.0           | -               |
| 20.9719 | 8200  | 0.0           | -               |
| 21.0997 | 8250  | 0.0           | -               |
| 21.2276 | 8300  | 0.0           | -               |
| 21.3555 | 8350  | 0.0           | -               |
| 21.4834 | 8400  | 0.0           | -               |
| 21.6113 | 8450  | 0.0           | -               |
| 21.7391 | 8500  | 0.0           | -               |
| 21.8670 | 8550  | 0.0           | -               |
| 21.9949 | 8600  | 0.0           | -               |
| 22.1228 | 8650  | 0.0           | -               |
| 22.2506 | 8700  | 0.0           | -               |
| 22.3785 | 8750  | 0.0           | -               |
| 22.5064 | 8800  | 0.0           | -               |
| 22.6343 | 8850  | 0.0           | -               |
| 22.7621 | 8900  | 0.0           | -               |
| 22.8900 | 8950  | 0.0           | -               |
| 23.0179 | 9000  | 0.0           | -               |
| 23.1458 | 9050  | 0.0           | -               |
| 23.2737 | 9100  | 0.0           | -               |
| 23.4015 | 9150  | 0.0           | -               |
| 23.5294 | 9200  | 0.0           | -               |
| 23.6573 | 9250  | 0.0           | -               |
| 23.7852 | 9300  | 0.0           | -               |
| 23.9130 | 9350  | 0.0           | -               |
| 24.0409 | 9400  | 0.0           | -               |
| 24.1688 | 9450  | 0.0           | -               |
| 24.2967 | 9500  | 0.0           | -               |
| 24.4246 | 9550  | 0.0           | -               |
| 24.5524 | 9600  | 0.0           | -               |
| 24.6803 | 9650  | 0.0           | -               |
| 24.8082 | 9700  | 0.0           | -               |
| 24.9361 | 9750  | 0.0           | -               |
| 25.0639 | 9800  | 0.0           | -               |
| 25.1918 | 9850  | 0.0           | -               |
| 25.3197 | 9900  | 0.0           | -               |
| 25.4476 | 9950  | 0.0           | -               |
| 25.5754 | 10000 | 0.0           | -               |
| 25.7033 | 10050 | 0.0           | -               |
| 25.8312 | 10100 | 0.0           | -               |
| 25.9591 | 10150 | 0.0           | -               |
| 26.0870 | 10200 | 0.0           | -               |
| 26.2148 | 10250 | 0.0           | -               |
| 26.3427 | 10300 | 0.0           | -               |
| 26.4706 | 10350 | 0.0           | -               |
| 26.5985 | 10400 | 0.0           | -               |
| 26.7263 | 10450 | 0.0           | -               |
| 26.8542 | 10500 | 0.0           | -               |
| 26.9821 | 10550 | 0.0           | -               |
| 27.1100 | 10600 | 0.0           | -               |
| 27.2379 | 10650 | 0.0           | -               |
| 27.3657 | 10700 | 0.0           | -               |
| 27.4936 | 10750 | 0.0           | -               |
| 27.6215 | 10800 | 0.0           | -               |
| 27.7494 | 10850 | 0.0           | -               |
| 27.8772 | 10900 | 0.0           | -               |
| 28.0051 | 10950 | 0.0           | -               |
| 28.1330 | 11000 | 0.0           | -               |
| 28.2609 | 11050 | 0.0           | -               |
| 28.3887 | 11100 | 0.0           | -               |
| 28.5166 | 11150 | 0.0           | -               |
| 28.6445 | 11200 | 0.0           | -               |
| 28.7724 | 11250 | 0.0           | -               |
| 28.9003 | 11300 | 0.0           | -               |
| 29.0281 | 11350 | 0.0           | -               |
| 29.1560 | 11400 | 0.0           | -               |
| 29.2839 | 11450 | 0.0           | -               |
| 29.4118 | 11500 | 0.0           | -               |
| 29.5396 | 11550 | 0.0           | -               |
| 29.6675 | 11600 | 0.0           | -               |
| 29.7954 | 11650 | 0.0           | -               |
| 29.9233 | 11700 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->