mini1013 commited on
Commit
368000a
·
verified ·
1 Parent(s): a4edad4

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,220 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 신일 SVC-D500SR 무선청소기 싸이클론 유선형 이동식 본체 디자인 그린 워너비템
14
+ - text: '[더트데빌 퀵플립플러스] 16V 리튬 무선 핸디청소기 (113년 전통/차량용/가정용/사무실/책상용/원룸/오피스텔) (주)비즈온플레이스'
15
+ - text: 신일전자 핸디형 무선 청소기 SVC-C27KP 차량용 가정용 소형청소기 원룸 새봄전자
16
+ - text: 더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스
17
+ - text: 홈마블 진공 무선 핸디 미니 소형 스틱 청소기 화이트 씨엠케이(CMK)
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.8571428571428571
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 10 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 2 | <ul><li>'셰퍼 스왈로우 핸디 청소기 JSK-N3009 주식회사 알앤피코스메틱'</li><li>'마이아 듀얼프로 에어건 무선 청소기 ND-MYA001W 박진희'</li><li>'신일 싸이클론 무선 청소기 SVC-D500SR 헤파필터 회전브러쉬 제이씨유통'</li></ul> |
66
+ | 1 | <ul><li>'LG전자 코드제로 R5 로봇청소기 R585WKA1 (카밍 베이지) 엠제이테크'</li><li>'LG 코드제로 R5 R585WKA 로봇청소기 흡입 + 물걸레 / KN (주)케이엔디지털'</li></ul> |
67
+ | 8 | <ul><li>'(전용) 한경희 무선청소기 HCV-B400 PRO 전용 클린타워 모터 보호 헤파필터 '</li><li>'삼성 정품 VS20B957F5E 청소기 헤드 흡입구 브러쉬 슬림 sava03291 H에이치마켓'</li><li>'[별제이]일렉트로룩스 청소기 호환용 먼지봉투 10매 S-BAG ZUS4065AF 호환용 먼지봉투 10매 신세계몰'</li></ul> |
68
+ | 5 | <ul><li>'디월트 20V 충전 스틱 전동 무선 청소기 차량용 세차용 집진기 DCV501LN 주식회사 신한비앤아이'</li><li>'디월트 집진기 충전 청소기 무선 세차기 차량용 스틱 업소용청소기 DCV501LN 본체만 라이프 공구'</li><li>'디월트 20V MAX 충전 스틱 집진 청소기 DCV501LN 01.DCV501LN 충전청소기 베어툴 한경툴 주식회사'</li></ul> |
69
+ | 9 | <ul><li>'[신제품] 70도 열풍 진드기 제거 침구청소기 레이캅 코리아 '</li><li>'[신제품] 70도 열풍 진드기 제거 침구청소기 레이캅 코리아 '</li><li>'비쎌 스팟클린 하이드로 스팀 3791S 습식 스팀청소기 빈대퇴치 고온 살균 소파얼룩제거 BISSEL '</li></ul> |
70
+ | 7 | <ul><li>'[런칭기념 보관가방 ] 클링봇S 물분사 가성비 창문청소로봇 유리창 창문 베란다 로봇청소기 '</li><li>'에코백스 윈봇 W1S 창문 로봇청소기 에코백스공식스토어'</li><li>'클링봇S 물분사 창문로봇청소기 원조 창문 청소기 보관가방포함 아이뮤즈본사'</li></ul> |
71
+ | 0 | <ul><li>'AVA 프리미엄 고압세척기 휴대용 가정용 고압세차기 AVA GO P55 동양테크툴'</li><li>'AVA 프리미엄 고압세척기 휴대용 가정용 고압세차기 아바 GO P55 에이지에스'</li></ul> |
72
+ | 6 | <ul><li>'신일 유선 싸이클론 진공청소기 SVC-R700LOT 레드 + 블랙_SVC-R700LOT 스위트코코'</li><li>'신일전자 유선 싸이클론 진공청소기 강력한흡입 HEPA필터 700W SVC-R700LOT 신창전자'</li><li>'이스타 먼지제로 유선 진공 청소기 핸디스틱 소형 원룸 가정용 ESK-WV400 주식회사 제이에스엘홀딩스'</li></ul> |
73
+ | 4 | <ul><li>'한경희 2in1 스팀청소기 HTE-S600 핸디스팀 LTE-S600 (주)에디샵'</li><li>'[2024년 최신형] 리빈치 초고속 예열 고온 살균 스팀청소기 LSC-200 리빈치 스팀청소기 + 추가패드 증정 총 4장 (주)바투네트워크'</li></ul> |
74
+ | 3 | <ul><li>'KAC-5000(유선형)/오토비스/자동물걸레청소기/국산정품/친환경제품/소비전력30W/1분당1000회이상/강력한함/ 1_화이트 클린랜드'</li><li>'WC-1500 무선 충전 물걸레 청소기 각도조절 세척 탈수통 제공 MinSellAmount 지큐아이씨앤씨'</li><li>'코맘스 소형 무선 물걸레청소기 그레이 PC9005G 보만코리아'</li></ul> |
75
+
76
+ ## Evaluation
77
+
78
+ ### Metrics
79
+ | Label | Metric |
80
+ |:--------|:-------|
81
+ | **all** | 0.8571 |
82
+
83
+ ## Uses
84
+
85
+ ### Direct Use for Inference
86
+
87
+ First install the SetFit library:
88
+
89
+ ```bash
90
+ pip install setfit
91
+ ```
92
+
93
+ Then you can load this model and run inference.
94
+
95
+ ```python
96
+ from setfit import SetFitModel
97
+
98
+ # Download from the 🤗 Hub
99
+ model = SetFitModel.from_pretrained("mini1013/master_cate_el19")
100
+ # Run inference
101
+ preds = model("더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스")
102
+ ```
103
+
104
+ <!--
105
+ ### Downstream Use
106
+
107
+ *List how someone could finetune this model on their own dataset.*
108
+ -->
109
+
110
+ <!--
111
+ ### Out-of-Scope Use
112
+
113
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
114
+ -->
115
+
116
+ <!--
117
+ ## Bias, Risks and Limitations
118
+
119
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
120
+ -->
121
+
122
+ <!--
123
+ ### Recommendations
124
+
125
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
126
+ -->
127
+
128
+ ## Training Details
129
+
130
+ ### Training Set Metrics
131
+ | Training set | Min | Median | Max |
132
+ |:-------------|:----|:--------|:----|
133
+ | Word count | 3 | 10.2791 | 18 |
134
+
135
+ | Label | Training Sample Count |
136
+ |:------|:----------------------|
137
+ | 0 | 2 |
138
+ | 1 | 2 |
139
+ | 2 | 50 |
140
+ | 3 | 5 |
141
+ | 4 | 2 |
142
+ | 5 | 6 |
143
+ | 6 | 14 |
144
+ | 7 | 9 |
145
+ | 8 | 26 |
146
+ | 9 | 13 |
147
+
148
+ ### Training Hyperparameters
149
+ - batch_size: (512, 512)
150
+ - num_epochs: (20, 20)
151
+ - max_steps: -1
152
+ - sampling_strategy: oversampling
153
+ - num_iterations: 40
154
+ - body_learning_rate: (2e-05, 2e-05)
155
+ - head_learning_rate: 2e-05
156
+ - loss: CosineSimilarityLoss
157
+ - distance_metric: cosine_distance
158
+ - margin: 0.25
159
+ - end_to_end: False
160
+ - use_amp: False
161
+ - warmup_proportion: 0.1
162
+ - seed: 42
163
+ - eval_max_steps: -1
164
+ - load_best_model_at_end: False
165
+
166
+ ### Training Results
167
+ | Epoch | Step | Training Loss | Validation Loss |
168
+ |:-------:|:----:|:-------------:|:---------------:|
169
+ | 0.0476 | 1 | 0.4954 | - |
170
+ | 2.3810 | 50 | 0.0399 | - |
171
+ | 4.7619 | 100 | 0.0186 | - |
172
+ | 7.1429 | 150 | 0.0152 | - |
173
+ | 9.5238 | 200 | 0.0155 | - |
174
+ | 11.9048 | 250 | 0.0093 | - |
175
+ | 14.2857 | 300 | 0.0025 | - |
176
+ | 16.6667 | 350 | 0.0006 | - |
177
+ | 19.0476 | 400 | 0.0037 | - |
178
+
179
+ ### Framework Versions
180
+ - Python: 3.10.12
181
+ - SetFit: 1.1.0.dev0
182
+ - Sentence Transformers: 3.1.1
183
+ - Transformers: 4.46.1
184
+ - PyTorch: 2.4.0+cu121
185
+ - Datasets: 2.20.0
186
+ - Tokenizers: 0.20.0
187
+
188
+ ## Citation
189
+
190
+ ### BibTeX
191
+ ```bibtex
192
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
193
+ doi = {10.48550/ARXIV.2209.11055},
194
+ url = {https://arxiv.org/abs/2209.11055},
195
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
196
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
197
+ title = {Efficient Few-Shot Learning Without Prompts},
198
+ publisher = {arXiv},
199
+ year = {2022},
200
+ copyright = {Creative Commons Attribution 4.0 International}
201
+ }
202
+ ```
203
+
204
+ <!--
205
+ ## Glossary
206
+
207
+ *Clearly define terms in order to be accessible across audiences.*
208
+ -->
209
+
210
+ <!--
211
+ ## Model Card Authors
212
+
213
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
214
+ -->
215
+
216
+ <!--
217
+ ## Model Card Contact
218
+
219
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
220
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_el",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e60b60054f97029bd1dff23cd9e7f50eeb904e4ad13ad8e70619970921d71975
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a8ebb04ba4cb95719a5695e212d16547d1c72bc52dd3726de42b778f9bef7627
3
+ size 62439
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff