Push model using huggingface_hub.
Browse files- 1_Pooling/config.json +10 -0
- README.md +220 -0
- config.json +29 -0
- config_sentence_transformers.json +10 -0
- config_setfit.json +4 -0
- model.safetensors +3 -0
- model_head.pkl +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +66 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": false,
|
4 |
+
"pooling_mode_mean_tokens": true,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
7 |
+
"pooling_mode_weightedmean_tokens": false,
|
8 |
+
"pooling_mode_lasttoken": false,
|
9 |
+
"include_prompt": true
|
10 |
+
}
|
README.md
ADDED
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
base_model: mini1013/master_domain
|
3 |
+
library_name: setfit
|
4 |
+
metrics:
|
5 |
+
- metric
|
6 |
+
pipeline_tag: text-classification
|
7 |
+
tags:
|
8 |
+
- setfit
|
9 |
+
- sentence-transformers
|
10 |
+
- text-classification
|
11 |
+
- generated_from_setfit_trainer
|
12 |
+
widget:
|
13 |
+
- text: 신일 SVC-D500SR 무선청소기 싸이클론 유선형 이동식 본체 디자인 그린 워너비템
|
14 |
+
- text: '[더트데빌 퀵플립플러스] 16V 리튬 무선 핸디청소기 (113년 전통/차량용/가정용/사무실/책상용/원룸/오피스텔) (주)비즈온플레이스'
|
15 |
+
- text: 신일전자 핸디형 무선 청소기 SVC-C27KP 차량용 가정용 소형청소기 원룸 새봄전자
|
16 |
+
- text: 더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스
|
17 |
+
- text: 홈마블 진공 무선 핸디 미니 소형 스틱 청소기 화이트 씨엠케이(CMK)
|
18 |
+
inference: true
|
19 |
+
model-index:
|
20 |
+
- name: SetFit with mini1013/master_domain
|
21 |
+
results:
|
22 |
+
- task:
|
23 |
+
type: text-classification
|
24 |
+
name: Text Classification
|
25 |
+
dataset:
|
26 |
+
name: Unknown
|
27 |
+
type: unknown
|
28 |
+
split: test
|
29 |
+
metrics:
|
30 |
+
- type: metric
|
31 |
+
value: 0.8571428571428571
|
32 |
+
name: Metric
|
33 |
+
---
|
34 |
+
|
35 |
+
# SetFit with mini1013/master_domain
|
36 |
+
|
37 |
+
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
|
38 |
+
|
39 |
+
The model has been trained using an efficient few-shot learning technique that involves:
|
40 |
+
|
41 |
+
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
|
42 |
+
2. Training a classification head with features from the fine-tuned Sentence Transformer.
|
43 |
+
|
44 |
+
## Model Details
|
45 |
+
|
46 |
+
### Model Description
|
47 |
+
- **Model Type:** SetFit
|
48 |
+
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
|
49 |
+
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
|
50 |
+
- **Maximum Sequence Length:** 512 tokens
|
51 |
+
- **Number of Classes:** 10 classes
|
52 |
+
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
|
53 |
+
<!-- - **Language:** Unknown -->
|
54 |
+
<!-- - **License:** Unknown -->
|
55 |
+
|
56 |
+
### Model Sources
|
57 |
+
|
58 |
+
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
|
59 |
+
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
|
60 |
+
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
|
61 |
+
|
62 |
+
### Model Labels
|
63 |
+
| Label | Examples |
|
64 |
+
|:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
65 |
+
| 2 | <ul><li>'셰퍼 스왈로우 핸디 청소기 JSK-N3009 주식회사 알앤피코스메틱'</li><li>'마이아 듀얼프로 에어건 무선 청소기 ND-MYA001W 박진희'</li><li>'신일 싸이클론 무선 청소기 SVC-D500SR 헤파필터 회전브러쉬 제이씨유통'</li></ul> |
|
66 |
+
| 1 | <ul><li>'LG전자 코드제로 R5 로봇청소기 R585WKA1 (카밍 베이지) 엠제이테크'</li><li>'LG 코드제로 R5 R585WKA 로봇청소기 흡입 + 물걸레 / KN (주)케이엔디지털'</li></ul> |
|
67 |
+
| 8 | <ul><li>'(전용) 한경희 무선청소기 HCV-B400 PRO 전용 클린타워 모터 보호 헤파필터 '</li><li>'삼성 정품 VS20B957F5E 청소기 헤드 흡입구 브러쉬 슬림 sava03291 H에이치마켓'</li><li>'[별제이]일렉트로룩스 청소기 호환용 먼지봉투 10매 S-BAG ZUS4065AF 호환용 먼지봉투 10매 신세계몰'</li></ul> |
|
68 |
+
| 5 | <ul><li>'디월트 20V 충전 스틱 전동 무선 청소기 차량용 세차용 집진기 DCV501LN 주식회사 신한비앤아이'</li><li>'디월트 집진기 충전 청소기 무선 세차기 차량용 스틱 업소용청소기 DCV501LN 본체만 라이프 공구'</li><li>'디월트 20V MAX 충전 스틱 집진 청소기 DCV501LN 01.DCV501LN 충전청소기 베어툴 한경툴 주식회사'</li></ul> |
|
69 |
+
| 9 | <ul><li>'[신제품] 70도 열풍 진드기 제거 침구청소기 레이캅 코리아 '</li><li>'[신제품] 70도 열풍 진드기 제거 침구청소기 레이캅 코리아 '</li><li>'비쎌 스팟클린 하이드로 스팀 3791S 습식 스팀청소기 빈대퇴치 고온 살균 소파얼룩제거 BISSEL '</li></ul> |
|
70 |
+
| 7 | <ul><li>'[런칭기념 보관가방 ] 클링봇S 물분사 가성비 창문청소로봇 유리창 창문 베란다 로봇청소기 '</li><li>'에코백스 윈봇 W1S 창문 로봇청소기 에코백스공식스토어'</li><li>'클링봇S 물분사 창문로봇청소기 원조 창문 청소기 보관가방포함 아이뮤즈본사'</li></ul> |
|
71 |
+
| 0 | <ul><li>'AVA 프리미엄 고압세척기 휴대용 가정용 고압세차기 AVA GO P55 동양테크툴'</li><li>'AVA 프리미엄 고압세척기 휴대용 가정용 고압세차기 아바 GO P55 에이지에스'</li></ul> |
|
72 |
+
| 6 | <ul><li>'신일 유선 싸이클론 진공청소기 SVC-R700LOT 레드 + 블랙_SVC-R700LOT 스위트코코'</li><li>'신일전자 유선 싸이클론 진공청소기 강력한흡입 HEPA필터 700W SVC-R700LOT 신창전자'</li><li>'이스타 먼지제로 유선 진공 청소기 핸디스틱 소형 원룸 가정용 ESK-WV400 주식회사 제이에스엘홀딩스'</li></ul> |
|
73 |
+
| 4 | <ul><li>'한경희 2in1 스팀청소기 HTE-S600 핸디스팀 LTE-S600 (주)에디샵'</li><li>'[2024년 최신형] 리빈치 초고속 예열 고온 살균 스팀청소기 LSC-200 리빈치 스팀청소기 + 추가패드 증정 총 4장 (주)바투네트워크'</li></ul> |
|
74 |
+
| 3 | <ul><li>'KAC-5000(유선형)/오토비스/자동물걸레청소기/국산정품/친환경제품/소비전력30W/1분당1000회이상/강력한함/ 1_화이트 클린랜드'</li><li>'WC-1500 무선 충전 물걸레 청소기 각도조절 세척 탈수통 제공 MinSellAmount 지큐아이씨앤씨'</li><li>'코맘스 소형 무선 물걸레청소기 그레이 PC9005G 보만코리아'</li></ul> |
|
75 |
+
|
76 |
+
## Evaluation
|
77 |
+
|
78 |
+
### Metrics
|
79 |
+
| Label | Metric |
|
80 |
+
|:--------|:-------|
|
81 |
+
| **all** | 0.8571 |
|
82 |
+
|
83 |
+
## Uses
|
84 |
+
|
85 |
+
### Direct Use for Inference
|
86 |
+
|
87 |
+
First install the SetFit library:
|
88 |
+
|
89 |
+
```bash
|
90 |
+
pip install setfit
|
91 |
+
```
|
92 |
+
|
93 |
+
Then you can load this model and run inference.
|
94 |
+
|
95 |
+
```python
|
96 |
+
from setfit import SetFitModel
|
97 |
+
|
98 |
+
# Download from the 🤗 Hub
|
99 |
+
model = SetFitModel.from_pretrained("mini1013/master_cate_el19")
|
100 |
+
# Run inference
|
101 |
+
preds = model("더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스")
|
102 |
+
```
|
103 |
+
|
104 |
+
<!--
|
105 |
+
### Downstream Use
|
106 |
+
|
107 |
+
*List how someone could finetune this model on their own dataset.*
|
108 |
+
-->
|
109 |
+
|
110 |
+
<!--
|
111 |
+
### Out-of-Scope Use
|
112 |
+
|
113 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
114 |
+
-->
|
115 |
+
|
116 |
+
<!--
|
117 |
+
## Bias, Risks and Limitations
|
118 |
+
|
119 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
120 |
+
-->
|
121 |
+
|
122 |
+
<!--
|
123 |
+
### Recommendations
|
124 |
+
|
125 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
126 |
+
-->
|
127 |
+
|
128 |
+
## Training Details
|
129 |
+
|
130 |
+
### Training Set Metrics
|
131 |
+
| Training set | Min | Median | Max |
|
132 |
+
|:-------------|:----|:--------|:----|
|
133 |
+
| Word count | 3 | 10.2791 | 18 |
|
134 |
+
|
135 |
+
| Label | Training Sample Count |
|
136 |
+
|:------|:----------------------|
|
137 |
+
| 0 | 2 |
|
138 |
+
| 1 | 2 |
|
139 |
+
| 2 | 50 |
|
140 |
+
| 3 | 5 |
|
141 |
+
| 4 | 2 |
|
142 |
+
| 5 | 6 |
|
143 |
+
| 6 | 14 |
|
144 |
+
| 7 | 9 |
|
145 |
+
| 8 | 26 |
|
146 |
+
| 9 | 13 |
|
147 |
+
|
148 |
+
### Training Hyperparameters
|
149 |
+
- batch_size: (512, 512)
|
150 |
+
- num_epochs: (20, 20)
|
151 |
+
- max_steps: -1
|
152 |
+
- sampling_strategy: oversampling
|
153 |
+
- num_iterations: 40
|
154 |
+
- body_learning_rate: (2e-05, 2e-05)
|
155 |
+
- head_learning_rate: 2e-05
|
156 |
+
- loss: CosineSimilarityLoss
|
157 |
+
- distance_metric: cosine_distance
|
158 |
+
- margin: 0.25
|
159 |
+
- end_to_end: False
|
160 |
+
- use_amp: False
|
161 |
+
- warmup_proportion: 0.1
|
162 |
+
- seed: 42
|
163 |
+
- eval_max_steps: -1
|
164 |
+
- load_best_model_at_end: False
|
165 |
+
|
166 |
+
### Training Results
|
167 |
+
| Epoch | Step | Training Loss | Validation Loss |
|
168 |
+
|:-------:|:----:|:-------------:|:---------------:|
|
169 |
+
| 0.0476 | 1 | 0.4954 | - |
|
170 |
+
| 2.3810 | 50 | 0.0399 | - |
|
171 |
+
| 4.7619 | 100 | 0.0186 | - |
|
172 |
+
| 7.1429 | 150 | 0.0152 | - |
|
173 |
+
| 9.5238 | 200 | 0.0155 | - |
|
174 |
+
| 11.9048 | 250 | 0.0093 | - |
|
175 |
+
| 14.2857 | 300 | 0.0025 | - |
|
176 |
+
| 16.6667 | 350 | 0.0006 | - |
|
177 |
+
| 19.0476 | 400 | 0.0037 | - |
|
178 |
+
|
179 |
+
### Framework Versions
|
180 |
+
- Python: 3.10.12
|
181 |
+
- SetFit: 1.1.0.dev0
|
182 |
+
- Sentence Transformers: 3.1.1
|
183 |
+
- Transformers: 4.46.1
|
184 |
+
- PyTorch: 2.4.0+cu121
|
185 |
+
- Datasets: 2.20.0
|
186 |
+
- Tokenizers: 0.20.0
|
187 |
+
|
188 |
+
## Citation
|
189 |
+
|
190 |
+
### BibTeX
|
191 |
+
```bibtex
|
192 |
+
@article{https://doi.org/10.48550/arxiv.2209.11055,
|
193 |
+
doi = {10.48550/ARXIV.2209.11055},
|
194 |
+
url = {https://arxiv.org/abs/2209.11055},
|
195 |
+
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
|
196 |
+
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
|
197 |
+
title = {Efficient Few-Shot Learning Without Prompts},
|
198 |
+
publisher = {arXiv},
|
199 |
+
year = {2022},
|
200 |
+
copyright = {Creative Commons Attribution 4.0 International}
|
201 |
+
}
|
202 |
+
```
|
203 |
+
|
204 |
+
<!--
|
205 |
+
## Glossary
|
206 |
+
|
207 |
+
*Clearly define terms in order to be accessible across audiences.*
|
208 |
+
-->
|
209 |
+
|
210 |
+
<!--
|
211 |
+
## Model Card Authors
|
212 |
+
|
213 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
214 |
+
-->
|
215 |
+
|
216 |
+
<!--
|
217 |
+
## Model Card Contact
|
218 |
+
|
219 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
220 |
+
-->
|
config.json
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "mini1013/master_item_el",
|
3 |
+
"architectures": [
|
4 |
+
"RobertaModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"bos_token_id": 0,
|
8 |
+
"classifier_dropout": null,
|
9 |
+
"eos_token_id": 2,
|
10 |
+
"gradient_checkpointing": false,
|
11 |
+
"hidden_act": "gelu",
|
12 |
+
"hidden_dropout_prob": 0.1,
|
13 |
+
"hidden_size": 768,
|
14 |
+
"initializer_range": 0.02,
|
15 |
+
"intermediate_size": 3072,
|
16 |
+
"layer_norm_eps": 1e-05,
|
17 |
+
"max_position_embeddings": 514,
|
18 |
+
"model_type": "roberta",
|
19 |
+
"num_attention_heads": 12,
|
20 |
+
"num_hidden_layers": 12,
|
21 |
+
"pad_token_id": 1,
|
22 |
+
"position_embedding_type": "absolute",
|
23 |
+
"tokenizer_class": "BertTokenizer",
|
24 |
+
"torch_dtype": "float32",
|
25 |
+
"transformers_version": "4.46.1",
|
26 |
+
"type_vocab_size": 1,
|
27 |
+
"use_cache": true,
|
28 |
+
"vocab_size": 32000
|
29 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "3.1.1",
|
4 |
+
"transformers": "4.46.1",
|
5 |
+
"pytorch": "2.4.0+cu121"
|
6 |
+
},
|
7 |
+
"prompts": {},
|
8 |
+
"default_prompt_name": null,
|
9 |
+
"similarity_fn_name": null
|
10 |
+
}
|
config_setfit.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"labels": null,
|
3 |
+
"normalize_embeddings": false
|
4 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e60b60054f97029bd1dff23cd9e7f50eeb904e4ad13ad8e70619970921d71975
|
3 |
+
size 442494816
|
model_head.pkl
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8ebb04ba4cb95719a5695e212d16547d1c72bc52dd3726de42b778f9bef7627
|
3 |
+
size 62439
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "[PAD]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "[UNK]",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[CLS]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[PAD]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[UNK]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"bos_token": "[CLS]",
|
45 |
+
"clean_up_tokenization_spaces": false,
|
46 |
+
"cls_token": "[CLS]",
|
47 |
+
"do_basic_tokenize": true,
|
48 |
+
"do_lower_case": false,
|
49 |
+
"eos_token": "[SEP]",
|
50 |
+
"mask_token": "[MASK]",
|
51 |
+
"max_length": 512,
|
52 |
+
"model_max_length": 512,
|
53 |
+
"never_split": null,
|
54 |
+
"pad_to_multiple_of": null,
|
55 |
+
"pad_token": "[PAD]",
|
56 |
+
"pad_token_type_id": 0,
|
57 |
+
"padding_side": "right",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"stride": 0,
|
60 |
+
"strip_accents": null,
|
61 |
+
"tokenize_chinese_chars": true,
|
62 |
+
"tokenizer_class": "BertTokenizer",
|
63 |
+
"truncation_side": "right",
|
64 |
+
"truncation_strategy": "longest_first",
|
65 |
+
"unk_token": "[UNK]"
|
66 |
+
}
|
vocab.txt
ADDED
The diff for this file is too large to render.
See raw diff
|
|