mini1013 commited on
Commit
33b868c
·
verified ·
1 Parent(s): 1198f3b

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,217 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: '[PS5] 딥 어스 디스크에디션 콘솔 커버 코발트 블루 오진상사(주)'
14
+ - text: '[PS5] 플레이스테이션5 디스크 에디션 오진상사(주)'
15
+ - text: PS4 그란투리스모 스포트 한글판 PlaystationHits 조이게임
16
+ - text: PS4 아이돌마스터 스탈릿 시즌 일반판 새제품 한글판 제이와이게임타운
17
+ - text: '[PS4] 색보이 빅 어드벤처 에이티게임(주)'
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.7771822358346095
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 5 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 3 | <ul><li>'[PS4] NBA 2K24 코비 브라이언트 에디션 특전 바우처 有 오진상사(주)'</li><li>'닌텐도 스위치 둘이서 냥코 대전쟁 한글판 게임매니아'</li><li>'닌텐도 마리오 카트 8 디럭스 + 조이콘 휠 패키지 SWITCH 한글판 마리오카트8 디럭스 (+조이콘핸들 세트)_마리오카트8 (+핸들 2개 원형 네온) 주식회사 쇼핑랩스'</li></ul> |
66
+ | 2 | <ul><li>'[트러스트마스터] T80 Ferrari 488 GTB 에디션 주식회사 투비네트웍스글로벌'</li><li>'트러스트마스터 T300 페라리 Integral 레이싱휠 [PS5, PS4, PC지원] 주식회사 디에스샵(DS SHOP)'</li><li>'레이저코리아 울버린 V2 크로마 Wolverine V2 Chroma 게임 컨트롤러 (주)하이케이넷'</li></ul> |
67
+ | 1 | <ul><li>'[노리박스] 오락실 게임기 분리기통(고급DX팩) (주)에스와이에스리테일'</li><li>'[XBOX]마이크로 소프트 정식발매 X-BOX series X 1TB 새제품 다음텔레콤'</li><li>'노리박스 32인치 스탠드형 강화유리 오락실게임기 오락기 DX팩(3000게임/720P/3~4인지원) (주)노리박스게임연구소'</li></ul> |
68
+ | 0 | <ul><li>'PC 삼국지 14 한글판 (스팀코드발송) (주) 디지털터치'</li><li>'Wizard with a Gun 스팀 PC 뉴 어카운트 (정지X) / 기존계정 가능 기존 계정 스팀 유통할인'</li><li>'철권7 tekken7 PC/스팀 철권7 (코드48시이내발송) 전한수'</li></ul> |
69
+ | 4 | <ul><li>'한국 닌텐도 정품 게임기 스위치 신형 OLED+콘트라 로그콥스+액정강화유리세트 OLED 네온레드블루 색상_OLED본체+뉴슈퍼마리오U디럭스+강화유리 에이지씨'</li><li>'게임&워치 젤다의 전설 주식회사 손오공'</li><li>'닌텐도 스위치 라이트 옐로 동물의 숲 케이스 주식회사 손오공'</li></ul> |
70
+
71
+ ## Evaluation
72
+
73
+ ### Metrics
74
+ | Label | Metric |
75
+ |:--------|:-------|
76
+ | **all** | 0.7772 |
77
+
78
+ ## Uses
79
+
80
+ ### Direct Use for Inference
81
+
82
+ First install the SetFit library:
83
+
84
+ ```bash
85
+ pip install setfit
86
+ ```
87
+
88
+ Then you can load this model and run inference.
89
+
90
+ ```python
91
+ from setfit import SetFitModel
92
+
93
+ # Download from the 🤗 Hub
94
+ model = SetFitModel.from_pretrained("mini1013/master_cate_el3")
95
+ # Run inference
96
+ preds = model("[PS4] 색보이 빅 어드벤처 에이티게임(주)")
97
+ ```
98
+
99
+ <!--
100
+ ### Downstream Use
101
+
102
+ *List how someone could finetune this model on their own dataset.*
103
+ -->
104
+
105
+ <!--
106
+ ### Out-of-Scope Use
107
+
108
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
109
+ -->
110
+
111
+ <!--
112
+ ## Bias, Risks and Limitations
113
+
114
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
115
+ -->
116
+
117
+ <!--
118
+ ### Recommendations
119
+
120
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
121
+ -->
122
+
123
+ ## Training Details
124
+
125
+ ### Training Set Metrics
126
+ | Training set | Min | Median | Max |
127
+ |:-------------|:----|:--------|:----|
128
+ | Word count | 5 | 10.7325 | 23 |
129
+
130
+ | Label | Training Sample Count |
131
+ |:------|:----------------------|
132
+ | 0 | 43 |
133
+ | 1 | 50 |
134
+ | 2 | 50 |
135
+ | 3 | 50 |
136
+ | 4 | 50 |
137
+
138
+ ### Training Hyperparameters
139
+ - batch_size: (512, 512)
140
+ - num_epochs: (20, 20)
141
+ - max_steps: -1
142
+ - sampling_strategy: oversampling
143
+ - num_iterations: 40
144
+ - body_learning_rate: (2e-05, 2e-05)
145
+ - head_learning_rate: 2e-05
146
+ - loss: CosineSimilarityLoss
147
+ - distance_metric: cosine_distance
148
+ - margin: 0.25
149
+ - end_to_end: False
150
+ - use_amp: False
151
+ - warmup_proportion: 0.1
152
+ - seed: 42
153
+ - eval_max_steps: -1
154
+ - load_best_model_at_end: False
155
+
156
+ ### Training Results
157
+ | Epoch | Step | Training Loss | Validation Loss |
158
+ |:-------:|:----:|:-------------:|:---------------:|
159
+ | 0.0263 | 1 | 0.496 | - |
160
+ | 1.3158 | 50 | 0.1186 | - |
161
+ | 2.6316 | 100 | 0.0532 | - |
162
+ | 3.9474 | 150 | 0.0398 | - |
163
+ | 5.2632 | 200 | 0.0002 | - |
164
+ | 6.5789 | 250 | 0.0001 | - |
165
+ | 7.8947 | 300 | 0.0001 | - |
166
+ | 9.2105 | 350 | 0.0001 | - |
167
+ | 10.5263 | 400 | 0.0001 | - |
168
+ | 11.8421 | 450 | 0.0001 | - |
169
+ | 13.1579 | 500 | 0.0001 | - |
170
+ | 14.4737 | 550 | 0.0001 | - |
171
+ | 15.7895 | 600 | 0.0 | - |
172
+ | 17.1053 | 650 | 0.0001 | - |
173
+ | 18.4211 | 700 | 0.0001 | - |
174
+ | 19.7368 | 750 | 0.0 | - |
175
+
176
+ ### Framework Versions
177
+ - Python: 3.10.12
178
+ - SetFit: 1.1.0.dev0
179
+ - Sentence Transformers: 3.1.1
180
+ - Transformers: 4.46.1
181
+ - PyTorch: 2.4.0+cu121
182
+ - Datasets: 2.20.0
183
+ - Tokenizers: 0.20.0
184
+
185
+ ## Citation
186
+
187
+ ### BibTeX
188
+ ```bibtex
189
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
190
+ doi = {10.48550/ARXIV.2209.11055},
191
+ url = {https://arxiv.org/abs/2209.11055},
192
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
193
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
194
+ title = {Efficient Few-Shot Learning Without Prompts},
195
+ publisher = {arXiv},
196
+ year = {2022},
197
+ copyright = {Creative Commons Attribution 4.0 International}
198
+ }
199
+ ```
200
+
201
+ <!--
202
+ ## Glossary
203
+
204
+ *Clearly define terms in order to be accessible across audiences.*
205
+ -->
206
+
207
+ <!--
208
+ ## Model Card Authors
209
+
210
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
211
+ -->
212
+
213
+ <!--
214
+ ## Model Card Contact
215
+
216
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
217
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_el",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5c68aa22eb0a23f08a7dca9b5201074175460893c8a0ce23419331a77a569fc
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1ffea33281fe923c27681264b8ff76a5dcecc39a23ecb85ec5212d84e8347c33
3
+ size 31647
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff