mini1013 commited on
Commit
508870d
·
verified ·
1 Parent(s): 1796a02

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,254 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 모어네이처 프리미엄 코엔자임Q10 500mg x 60캡슐 주식회사 템스윈(Tems Win)
14
+ - text: 솔가 맥주효모 비타민B12 티아민 250정 맥주효모 250정(80일분) X 2개 꿈
15
+ - text: 닥터스베스트 OptiMSM 함유 MSM 분말 250g(8.8oz) 메트로 나인
16
+ - text: 정관장 홍삼원 6년근 홍삼농축액 50ml 30포 고형분60% 선물세트 쇼핑백포함 주식회사 무한종합상사
17
+ - text: 락토핏 당케어 2g x 60포 (주)레놈 성수지점
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.7147122562003371
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 13 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 2.0 | <ul><li>'콤비타 마누카꿀 UMF10 500g 2개 2.콤비타 마누카꿀 UMF10+ 500g 2개 재인뉴트리셔널'</li><li>'데저트 크릭 로 텍사스 꿀 340g 2개 Desert Creek Honey Raw Unfiltered Texas Honey 누크몰글로벌'</li><li>'한울벌꿀 국내산 아카시아꿀 사양 벌꿀 2.4kg 아카시아꿀 2.4kg 선흥물산'</li></ul> |
66
+ | 6.0 | <ul><li>'블루미너스 왕의 맥문동 30포X4박스/국내산 볶은 맥문동 뿌리 가루 맥문동차 사포닌 추천 주식회사 대한종합상사'</li><li>'홍국 발효 구기자 분말 가루 청양구기자 홍국균 500g 홍국발효구기자 분말 500g (1팩) 푸드센스'</li><li>'GNM자연의품격 루테인 지아잔틴 아스타잔틴 500mg x 30캡슐 케이티씨 주식회사'</li></ul> |
67
+ | 0.0 | <ul><li>'[3+1 이벤트] 데이풀 호박즙 아르기닌 110ml 1박스 여자아르기닌 쌍수 성형 붓기 늙은호박즙 어반랩스 주식회사'</li><li>'홍삼생알칡즙 망구 에이'</li><li>'국산 아로니아원액 1L 2병 아로니아즙 농업회사법인 청정산들해(주)'</li></ul> |
68
+ | 5.0 | <ul><li>'고농축 랩온랩 k2 히말라야 숙취해소제 허브 추출물 1박스 30정 단비'</li><li>'고농축 k2 히말라야 숙취해소제 허브 추출물 1박스 30정 히말라야숙취해소제 (30정) 랩온랩(LAB ON LAB)'</li><li>'히말라야 숙취해소 파티스마트 소프트 츄 10개입 04_파티스마트 2개입 4박스 (주)히말라야코리아'</li></ul> |
69
+ | 10.0 | <ul><li>'황성주박사의 마시는 영양식 140ml 24팩 고소한 곡물맛 하얀'</li><li>'뉴케어 고칼슘 영양갱 40g 30입 아르미유'</li><li>'대상웰라이프 마이밀 마이키즈 밀크맛 150ml 24팩 아이간식 +Npay 2000원 대상웰라이프(주)'</li></ul> |
70
+ | 3.0 | <ul><li>'Green Foods 그린푸드 마그마 플러스 드링크 믹스 10.6oz 캐주얼'</li><li>'캐나다 영양제 퀄리티랩 프리미엄 퀄리티 로얄제리 1000mg \ufeff200캡슐 바이오 파크(Bio park)'</li><li>'(100매)푸드어홀릭 네이처스킨 오이 마스크팩 (100매)푸드어홀릭 네이처스킨 오이 마스크팩 차일드'</li></ul> |
71
+ | 9.0 | <ul><li>'동원 천지인 홍삼절편 수 (15g 8갑 8일분) (주)동방유래'</li><li>'정관장 홍삼차 100포 인삼차 건강차 홍삼차(포장O) 주식회사 앨리스월드'</li><li>'[정기구독]함소아 홍키통키 프리미어 그린 1박스 함소아제약'</li></ul> |
72
+ | 8.0 | <ul><li>'우슬 300g 우슬분말 300g 농업회사법인 주식회사 두손애약초'</li><li>'차가버섯 선물세트 1kg 러시아/고급바구니 포장 주식회사 생생드림'</li><li>'산사 열매 국내산 300g 산사자 아가위 나무 산사 300g x5개(10%할인) 농업회사법인 주식회사 두손애약초'</li></ul> |
73
+ | 11.0 | <ul><li>'유한m 액티브 셀렌효모 플러스 480정 / 맥주효모 셀레늄 옥타코사놀 헬스피아'</li><li>'효소락 30포 용한약국'</li><li>'여에스더 맥주효모 비오틴 울트라 케어 5200 맥스 국내 최대함량 맥주효모&비오틴 소형환 [30%] 1박스 (14포) 에스더포뮬러 주식회사'</li></ul> |
74
+ | 1.0 | <ul><li>'몽글환 차전자피환 4g 30포 우리닥터'</li><li>'국산 여주환 500g 여주환 500g 주식회사 건강중심'</li><li>'마카 아르기닌 야관문 서리태환 남자 활력 모발관리 필수 콩의두감 3병 선물세트 (2+1)야관문 플러스 세트 3개(9병) 주식회사 루토닉스'</li></ul> |
75
+ | 4.0 | <ul><li>'암웨이 더블엑스 종합비타민 무기질 리필 칼맥디 프렌즈'</li><li>'종근당 이뮨 듀오 멀티비타맥스 140ml 7병 1박스 늘품서치'</li><li>'네추럴라이즈 멀티비타민 꾸미 2.5g x 60개입 현민예 스토어'</li></ul> |
76
+ | 12.0 | <ul><li>'활강원 백만 임산부 발효 자연 곡물 효소 400만 역가수치 효소제 100포 백만효소 x 2박스 (200스틱) 디와이코어'</li><li>'이영애의건강미식 카무트 브랜드 밀 효소 골드 3g x 30포 주식회사 템스윈(Tems Win)'</li><li>'이영애의 건강미식 골드 카무트 효소 1개월 분 카무트 효소 1개 주식회사 네이처라우드'</li></ul> |
77
+ | 7.0 | <ul><li>'인삼 도매일번지 난발삼 금산 세척 난발삼_03난발삼 소500g_세척안함 금산인삼 도매 일번지'</li><li>'동우당제약 궁중대보 250g 국내산 인삼 복령 지황 에이치앤지바이오'</li><li>'동우당제약 궁중대보 250g 국내산 인삼 복령 지황 인투'</li></ul> |
78
+
79
+ ## Evaluation
80
+
81
+ ### Metrics
82
+ | Label | Metric |
83
+ |:--------|:-------|
84
+ | **all** | 0.7147 |
85
+
86
+ ## Uses
87
+
88
+ ### Direct Use for Inference
89
+
90
+ First install the SetFit library:
91
+
92
+ ```bash
93
+ pip install setfit
94
+ ```
95
+
96
+ Then you can load this model and run inference.
97
+
98
+ ```python
99
+ from setfit import SetFitModel
100
+
101
+ # Download from the 🤗 Hub
102
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd1")
103
+ # Run inference
104
+ preds = model("락토핏 당케어 2g x 60포 (주)레놈 성수지점")
105
+ ```
106
+
107
+ <!--
108
+ ### Downstream Use
109
+
110
+ *List how someone could finetune this model on their own dataset.*
111
+ -->
112
+
113
+ <!--
114
+ ### Out-of-Scope Use
115
+
116
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
117
+ -->
118
+
119
+ <!--
120
+ ## Bias, Risks and Limitations
121
+
122
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
123
+ -->
124
+
125
+ <!--
126
+ ### Recommendations
127
+
128
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
129
+ -->
130
+
131
+ ## Training Details
132
+
133
+ ### Training Set Metrics
134
+ | Training set | Min | Median | Max |
135
+ |:-------------|:----|:-------|:----|
136
+ | Word count | 4 | 9.8446 | 23 |
137
+
138
+ | Label | Training Sample Count |
139
+ |:------|:----------------------|
140
+ | 0.0 | 50 |
141
+ | 1.0 | 50 |
142
+ | 2.0 | 50 |
143
+ | 3.0 | 50 |
144
+ | 4.0 | 50 |
145
+ | 5.0 | 31 |
146
+ | 6.0 | 50 |
147
+ | 7.0 | 50 |
148
+ | 8.0 | 24 |
149
+ | 9.0 | 50 |
150
+ | 10.0 | 50 |
151
+ | 11.0 | 50 |
152
+ | 12.0 | 24 |
153
+
154
+ ### Training Hyperparameters
155
+ - batch_size: (512, 512)
156
+ - num_epochs: (20, 20)
157
+ - max_steps: -1
158
+ - sampling_strategy: oversampling
159
+ - num_iterations: 40
160
+ - body_learning_rate: (2e-05, 2e-05)
161
+ - head_learning_rate: 2e-05
162
+ - loss: CosineSimilarityLoss
163
+ - distance_metric: cosine_distance
164
+ - margin: 0.25
165
+ - end_to_end: False
166
+ - use_amp: False
167
+ - warmup_proportion: 0.1
168
+ - seed: 42
169
+ - eval_max_steps: -1
170
+ - load_best_model_at_end: False
171
+
172
+ ### Training Results
173
+ | Epoch | Step | Training Loss | Validation Loss |
174
+ |:-------:|:----:|:-------------:|:---------------:|
175
+ | 0.0110 | 1 | 0.3794 | - |
176
+ | 0.5495 | 50 | 0.2808 | - |
177
+ | 1.0989 | 100 | 0.1721 | - |
178
+ | 1.6484 | 150 | 0.0976 | - |
179
+ | 2.1978 | 200 | 0.0646 | - |
180
+ | 2.7473 | 250 | 0.0528 | - |
181
+ | 3.2967 | 300 | 0.0428 | - |
182
+ | 3.8462 | 350 | 0.0128 | - |
183
+ | 4.3956 | 400 | 0.0079 | - |
184
+ | 4.9451 | 450 | 0.01 | - |
185
+ | 5.4945 | 500 | 0.0115 | - |
186
+ | 6.0440 | 550 | 0.0002 | - |
187
+ | 6.5934 | 600 | 0.0001 | - |
188
+ | 7.1429 | 650 | 0.0001 | - |
189
+ | 7.6923 | 700 | 0.0001 | - |
190
+ | 8.2418 | 750 | 0.0001 | - |
191
+ | 8.7912 | 800 | 0.0001 | - |
192
+ | 9.3407 | 850 | 0.0001 | - |
193
+ | 9.8901 | 900 | 0.0001 | - |
194
+ | 10.4396 | 950 | 0.0001 | - |
195
+ | 10.9890 | 1000 | 0.0001 | - |
196
+ | 11.5385 | 1050 | 0.0001 | - |
197
+ | 12.0879 | 1100 | 0.0001 | - |
198
+ | 12.6374 | 1150 | 0.0001 | - |
199
+ | 13.1868 | 1200 | 0.0001 | - |
200
+ | 13.7363 | 1250 | 0.0001 | - |
201
+ | 14.2857 | 1300 | 0.0001 | - |
202
+ | 14.8352 | 1350 | 0.0 | - |
203
+ | 15.3846 | 1400 | 0.0001 | - |
204
+ | 15.9341 | 1450 | 0.0 | - |
205
+ | 16.4835 | 1500 | 0.0001 | - |
206
+ | 17.0330 | 1550 | 0.0 | - |
207
+ | 17.5824 | 1600 | 0.0 | - |
208
+ | 18.1319 | 1650 | 0.0 | - |
209
+ | 18.6813 | 1700 | 0.0 | - |
210
+ | 19.2308 | 1750 | 0.0 | - |
211
+ | 19.7802 | 1800 | 0.0001 | - |
212
+
213
+ ### Framework Versions
214
+ - Python: 3.10.12
215
+ - SetFit: 1.1.0.dev0
216
+ - Sentence Transformers: 3.1.1
217
+ - Transformers: 4.46.1
218
+ - PyTorch: 2.4.0+cu121
219
+ - Datasets: 2.20.0
220
+ - Tokenizers: 0.20.0
221
+
222
+ ## Citation
223
+
224
+ ### BibTeX
225
+ ```bibtex
226
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
227
+ doi = {10.48550/ARXIV.2209.11055},
228
+ url = {https://arxiv.org/abs/2209.11055},
229
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
230
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
231
+ title = {Efficient Few-Shot Learning Without Prompts},
232
+ publisher = {arXiv},
233
+ year = {2022},
234
+ copyright = {Creative Commons Attribution 4.0 International}
235
+ }
236
+ ```
237
+
238
+ <!--
239
+ ## Glossary
240
+
241
+ *Clearly define terms in order to be accessible across audiences.*
242
+ -->
243
+
244
+ <!--
245
+ ## Model Card Authors
246
+
247
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
248
+ -->
249
+
250
+ <!--
251
+ ## Model Card Contact
252
+
253
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
254
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec3a20e8556b899d3212ceaa374abeec16ceadb0bf8f259c2378e5f988c3bfa4
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ea1b41602f3003eb2443cad9967d590707d7e467972be26951da8201dbf57bf5
3
+ size 80895
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff