mini1013 commited on
Commit
482cb3b
·
verified ·
1 Parent(s): 35ae34f

Push model using huggingface_hub.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: mini1013/master_domain
3
+ library_name: setfit
4
+ metrics:
5
+ - metric
6
+ pipeline_tag: text-classification
7
+ tags:
8
+ - setfit
9
+ - sentence-transformers
10
+ - text-classification
11
+ - generated_from_setfit_trainer
12
+ widget:
13
+ - text: 동원 덴마크 구워먹는 치즈 후라이드 갈릭 125g x 3개 007스테이지스
14
+ - text: 앵커크림치즈 1박스 (1kg x 12개) 앵커크림치즈 1박스 (1kg x 12개) (주)비오비
15
+ - text: 홉라 무가당 휘핑크림 1L 2개세트 마켓이
16
+ - text: 매일 상하치즈 리코타치즈 200g 2개 냉장배송 대명유통
17
+ - text: 홉라 생크림 무가당 1L 휘핑크림 베이킹 쿠킹크림 1000ml 홉라 생크림 무가당 1L + 아이스박스 (주)비오비
18
+ inference: true
19
+ model-index:
20
+ - name: SetFit with mini1013/master_domain
21
+ results:
22
+ - task:
23
+ type: text-classification
24
+ name: Text Classification
25
+ dataset:
26
+ name: Unknown
27
+ type: unknown
28
+ split: test
29
+ metrics:
30
+ - type: metric
31
+ value: 0.9220726783310902
32
+ name: Metric
33
+ ---
34
+
35
+ # SetFit with mini1013/master_domain
36
+
37
+ This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
38
+
39
+ The model has been trained using an efficient few-shot learning technique that involves:
40
+
41
+ 1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
42
+ 2. Training a classification head with features from the fine-tuned Sentence Transformer.
43
+
44
+ ## Model Details
45
+
46
+ ### Model Description
47
+ - **Model Type:** SetFit
48
+ - **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
49
+ - **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
50
+ - **Maximum Sequence Length:** 512 tokens
51
+ - **Number of Classes:** 6 classes
52
+ <!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
53
+ <!-- - **Language:** Unknown -->
54
+ <!-- - **License:** Unknown -->
55
+
56
+ ### Model Sources
57
+
58
+ - **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
59
+ - **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
60
+ - **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
61
+
62
+ ### Model Labels
63
+ | Label | Examples |
64
+ |:------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
65
+ | 5.0 | <ul><li>'[아이스박스무료] 선인 DB 휘핑크림 1L 무가당 혼합 생크림 재이F&B'</li><li>'이탈리아 홉라 식물성 생크림 500ml 6개 무가당 홉라 홈라 크림 알이즈웰'</li><li>'카파 포모나 휘핑 스프레이 500g 와플 크림 딸기향/휘핑 스프레이 500g 디씨즈(This is)'</li></ul> |
66
+ | 1.0 | <ul><li>'오뚜기 버터후레시 48개(아이스박스)/일회용버터 오뚜기 딸기잼 디스펜팩 40개+메이플시럽 40 박길용'</li><li>'버터린 롯데 450g 마늘향오일 갈릭버터오일 (주)인벨'</li><li>'[본사직송] 라꽁비에뜨 가염 무염 꽃소금 버터 450g (15g x 30개) 11/15(수)배송예정_라꽁비에뜨-가염 450g (30개입) 인에이블 코리아(주)'</li></ul> |
67
+ | 3.0 | <ul><li>'인도네시아 인도 밀크 스위트드컨덴센 팩 545g 연유 동원무역(이마트24 감천네거리점)'</li><li>'매일연유 5kg 대용량 x 2개 연유 카페스토리(CAFE STORY)'</li><li>'누티 크리머 스위텐드 연유 시럽 385g x 8개 클루'</li></ul> |
68
+ | 0.0 | <ul><li>'오뚜기 파운드 마아가린(벌크) 9kg 피치피치몰'</li><li>'오뚜기 쿠키 옥수수마가린 200Gx2 1세트 제과 제빵 토스트 방글방글마켓'</li><li>'Whirl Admiration Pro Fry 액체 쇼트닝 튀김용 3.6kg 8파운드 포커스라이프'</li></ul> |
69
+ | 2.0 | <ul><li>'밀락골드 1L 제품수량선택 에스제이푸드(SJ FOOD)'</li><li>'[구매전 긴급공지 필독]1217. 뉴골드라벨 - 한박스(1030g x 12개) 베이킹도전'</li><li>'밀락골드 1L 아이스박스필수구매 에스제이푸드(SJ FOOD)'</li></ul> |
70
+ | 4.0 | <ul><li>'상하 샐러드용 슈레드치즈 210g X 1개 종이박스포장 오하'</li><li>'끼리 크림���즈 스프레드 플레인 x 4개 베이글 발라 먹는 치즈 토스트 끼리 크림치즈 스프레드 플레인 4개 더팜'</li><li>'데르뜨 롤케이크 선물세트 소잘우유 초코크림 380g 1개 우유크림 360g 냉동 오씨홀딩스'</li></ul> |
71
+
72
+ ## Evaluation
73
+
74
+ ### Metrics
75
+ | Label | Metric |
76
+ |:--------|:-------|
77
+ | **all** | 0.9221 |
78
+
79
+ ## Uses
80
+
81
+ ### Direct Use for Inference
82
+
83
+ First install the SetFit library:
84
+
85
+ ```bash
86
+ pip install setfit
87
+ ```
88
+
89
+ Then you can load this model and run inference.
90
+
91
+ ```python
92
+ from setfit import SetFitModel
93
+
94
+ # Download from the 🤗 Hub
95
+ model = SetFitModel.from_pretrained("mini1013/master_cate_fd13")
96
+ # Run inference
97
+ preds = model("홉라 무가당 휘핑크림 1L 2개세트 마켓이")
98
+ ```
99
+
100
+ <!--
101
+ ### Downstream Use
102
+
103
+ *List how someone could finetune this model on their own dataset.*
104
+ -->
105
+
106
+ <!--
107
+ ### Out-of-Scope Use
108
+
109
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
110
+ -->
111
+
112
+ <!--
113
+ ## Bias, Risks and Limitations
114
+
115
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
116
+ -->
117
+
118
+ <!--
119
+ ### Recommendations
120
+
121
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
122
+ -->
123
+
124
+ ## Training Details
125
+
126
+ ### Training Set Metrics
127
+ | Training set | Min | Median | Max |
128
+ |:-------------|:----|:-------|:----|
129
+ | Word count | 3 | 9.5067 | 18 |
130
+
131
+ | Label | Training Sample Count |
132
+ |:------|:----------------------|
133
+ | 0.0 | 50 |
134
+ | 1.0 | 50 |
135
+ | 2.0 | 50 |
136
+ | 3.0 | 50 |
137
+ | 4.0 | 50 |
138
+ | 5.0 | 50 |
139
+
140
+ ### Training Hyperparameters
141
+ - batch_size: (512, 512)
142
+ - num_epochs: (20, 20)
143
+ - max_steps: -1
144
+ - sampling_strategy: oversampling
145
+ - num_iterations: 40
146
+ - body_learning_rate: (2e-05, 2e-05)
147
+ - head_learning_rate: 2e-05
148
+ - loss: CosineSimilarityLoss
149
+ - distance_metric: cosine_distance
150
+ - margin: 0.25
151
+ - end_to_end: False
152
+ - use_amp: False
153
+ - warmup_proportion: 0.1
154
+ - seed: 42
155
+ - eval_max_steps: -1
156
+ - load_best_model_at_end: False
157
+
158
+ ### Training Results
159
+ | Epoch | Step | Training Loss | Validation Loss |
160
+ |:-------:|:----:|:-------------:|:---------------:|
161
+ | 0.0213 | 1 | 0.4249 | - |
162
+ | 1.0638 | 50 | 0.2783 | - |
163
+ | 2.1277 | 100 | 0.0747 | - |
164
+ | 3.1915 | 150 | 0.0734 | - |
165
+ | 4.2553 | 200 | 0.0368 | - |
166
+ | 5.3191 | 250 | 0.0373 | - |
167
+ | 6.3830 | 300 | 0.0003 | - |
168
+ | 7.4468 | 350 | 0.0001 | - |
169
+ | 8.5106 | 400 | 0.0001 | - |
170
+ | 9.5745 | 450 | 0.0001 | - |
171
+ | 10.6383 | 500 | 0.0 | - |
172
+ | 11.7021 | 550 | 0.0 | - |
173
+ | 12.7660 | 600 | 0.0 | - |
174
+ | 13.8298 | 650 | 0.0 | - |
175
+ | 14.8936 | 700 | 0.0 | - |
176
+ | 15.9574 | 750 | 0.0 | - |
177
+ | 17.0213 | 800 | 0.0 | - |
178
+ | 18.0851 | 850 | 0.0 | - |
179
+ | 19.1489 | 900 | 0.0 | - |
180
+
181
+ ### Framework Versions
182
+ - Python: 3.10.12
183
+ - SetFit: 1.1.0.dev0
184
+ - Sentence Transformers: 3.1.1
185
+ - Transformers: 4.46.1
186
+ - PyTorch: 2.4.0+cu121
187
+ - Datasets: 2.20.0
188
+ - Tokenizers: 0.20.0
189
+
190
+ ## Citation
191
+
192
+ ### BibTeX
193
+ ```bibtex
194
+ @article{https://doi.org/10.48550/arxiv.2209.11055,
195
+ doi = {10.48550/ARXIV.2209.11055},
196
+ url = {https://arxiv.org/abs/2209.11055},
197
+ author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
198
+ keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
199
+ title = {Efficient Few-Shot Learning Without Prompts},
200
+ publisher = {arXiv},
201
+ year = {2022},
202
+ copyright = {Creative Commons Attribution 4.0 International}
203
+ }
204
+ ```
205
+
206
+ <!--
207
+ ## Glossary
208
+
209
+ *Clearly define terms in order to be accessible across audiences.*
210
+ -->
211
+
212
+ <!--
213
+ ## Model Card Authors
214
+
215
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
216
+ -->
217
+
218
+ <!--
219
+ ## Model Card Contact
220
+
221
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
222
+ -->
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "mini1013/master_item_fd",
3
+ "architectures": [
4
+ "RobertaModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "bos_token_id": 0,
8
+ "classifier_dropout": null,
9
+ "eos_token_id": 2,
10
+ "gradient_checkpointing": false,
11
+ "hidden_act": "gelu",
12
+ "hidden_dropout_prob": 0.1,
13
+ "hidden_size": 768,
14
+ "initializer_range": 0.02,
15
+ "intermediate_size": 3072,
16
+ "layer_norm_eps": 1e-05,
17
+ "max_position_embeddings": 514,
18
+ "model_type": "roberta",
19
+ "num_attention_heads": 12,
20
+ "num_hidden_layers": 12,
21
+ "pad_token_id": 1,
22
+ "position_embedding_type": "absolute",
23
+ "tokenizer_class": "BertTokenizer",
24
+ "torch_dtype": "float32",
25
+ "transformers_version": "4.46.1",
26
+ "type_vocab_size": 1,
27
+ "use_cache": true,
28
+ "vocab_size": 32000
29
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.1",
4
+ "transformers": "4.46.1",
5
+ "pytorch": "2.4.0+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
config_setfit.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "labels": null,
3
+ "normalize_embeddings": false
4
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cc21bf335c286a500edd7dff487a899b33971e90a62f9722f8ed5e929eddac92
3
+ size 442494816
model_head.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0cab3365212b8b4cb067f8cd31e7ca7382b99ab01c96994de5261e776caabe16
3
+ size 37767
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "[CLS]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "[SEP]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "[MASK]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "[PAD]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "[SEP]",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "[UNK]",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[CLS]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "1": {
12
+ "content": "[PAD]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "2": {
20
+ "content": "[SEP]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "3": {
28
+ "content": "[UNK]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "4": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "bos_token": "[CLS]",
45
+ "clean_up_tokenization_spaces": false,
46
+ "cls_token": "[CLS]",
47
+ "do_basic_tokenize": true,
48
+ "do_lower_case": false,
49
+ "eos_token": "[SEP]",
50
+ "mask_token": "[MASK]",
51
+ "max_length": 512,
52
+ "model_max_length": 512,
53
+ "never_split": null,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "[PAD]",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "sep_token": "[SEP]",
59
+ "stride": 0,
60
+ "strip_accents": null,
61
+ "tokenize_chinese_chars": true,
62
+ "tokenizer_class": "BertTokenizer",
63
+ "truncation_side": "right",
64
+ "truncation_strategy": "longest_first",
65
+ "unk_token": "[UNK]"
66
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff