File size: 10,934 Bytes
a8e5f16
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 명절선물 동원참치 S12호 참치선물세트 설선물 한가위 동원참치 S12호 제이에스포
- text: 동원참치 덕용 업소용 대용량 덕용 참치 1.88kg  주식회사 이너피스(inner peace)
- text: 사조 자연산 골뱅이 400g  주식회사 당장만나
- text: 목우촌 뚝심 340g  장보고가
- text: 농심 알쿠니아 황도 2 통조림 850g 알쿠니아 황도 통조림 200g x 3개입 지에스(GS) 금성상회
inference: true
model-index:
- name: SetFit with mini1013/master_domain
  results:
  - task:
      type: text-classification
      name: Text Classification
    dataset:
      name: Unknown
      type: unknown
      split: test
    metrics:
    - type: metric
      value: 0.9854036341971999
      name: Metric
---

# SetFit with mini1013/master_domain

This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.

## Model Details

### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->

### Model Sources

- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)

### Model Labels
| Label | Examples                                                                                                                                                                                                    |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0   | <ul><li>'그린올리브 365g 동서 리치스 올리브 샐러드  화남F.C'</li><li>'동서 리치스 슬라이스 오이피클 3kg  무성유통'</li><li>'리치스 슬라이스 오이피클 3kg 피클  화남F.C'</li></ul>                                                                             |
| 3.0   | <ul><li>'CJ제일제당 스팸12호 1세트  위드'</li><li>'CJ제일제당 스팸 복합 5호 선물세트  보담유통'</li><li>'스팸복합5호 햄 카놀라유 선물세트 복합 명절 추석 세트  땡그리나'</li></ul>                                                                                |
| 4.0   | <ul><li>'동원 스위트콘 340g 골든 동원 저스트 스위트콘 340g(리뉴얼) 중앙 리테일'</li><li>'오뚜기 스위트콘 옥수수통조림 340g 스위트콘 340g x 1개 주식회사 로씨네'</li><li>'동서 리치스 홀커널 스위트콘 425g 원터치 옥수수 캔 통조림  주식회사 당장만나'</li></ul>                             |
| 7.0   | <ul><li>'스팸 마일드 25% 라이트 340g 외 스팸 4종 1. 스팸 클래식 200g 주식회사 하포테크'</li><li>'CJ제일제당 스팸 싱글 클래식 80g CJ제일제당 스팸 싱글 25% 라이트 80g 삼영유통'</li><li>'통조림 CJ제일제당 스팸 클래식 200g/햄통조림 ~통조림/캔햄_쿡샵 스위트콘 (태국산) 420g 단비마켓'</li></ul> |
| 2.0   | <ul><li>'샘표 김치찌개용꽁치280g/김치찌개전용꽁치통조림  주식회사 달인식자재'</li><li>'샘표 고등어 원터치 400g  조이텍'</li><li>'통조림 오뚜기 고등어 400g/참치캔 ~150g이상참치_동원 고추참치 150g 모두유통주식회사'</li></ul>                                                    |
| 1.0   | <ul><li>'화풍 양송이 편 2.8Kg  다유몰'</li><li>'디벨라 렌틸스 400g /렌즈콩  (주)푸드올마켓'</li><li>'몬 코코넛밀크 400ml 02__코코넛밀크_400ml 정앤남'</li></ul>                                                                                  |
| 0.0   | <ul><li>'유동 자연산 골뱅이 230g /s/ 번데기 술안주 비빔면 소면 무침 국수 야식 통조림  (주)강남상사'</li><li>'동원에프앤비 동원 자연산 골뱅이 230g  주식회사 진현유통'</li><li>'자연산 골뱅이캔삼포140g  스완인터내셔널'</li></ul>                                                  |
| 5.0   | <ul><li>'동원참치 고추참치 통조림 100g 동원 참치 12종_17.동원 고추 참치 150g (주)다누림글로벌'</li><li>'오뚜기 참치빅캔 살코기 1.88kg  플랜트더퓨처'</li><li>'동원 참치 3kg 대용량 참치캔 업소용 코스트코  태양팜스'</li></ul>                                                |
| 8.0   | <ul><li>'샘표 통조림캔 황도 400g 조림용고등어 400g (주)두배로'</li><li>'동서 리치스 파인애플 슬라이스 836g  (주)푸드팜'</li><li>'동서 리치스 후르츠칵테일 3kg 미동의 제이모리'</li></ul>                                                                         |

## Evaluation

### Metrics
| Label   | Metric |
|:--------|:-------|
| **all** | 0.9854 |

## Uses

### Direct Use for Inference

First install the SetFit library:

```bash
pip install setfit
```

Then you can load this model and run inference.

```python
from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd21")
# Run inference
preds = model("목우촌 뚝심 340g  장보고가")
```

<!--
### Downstream Use

*List how someone could finetune this model on their own dataset.*
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count   | 3   | 8.4489 | 22  |

| Label | Training Sample Count |
|:------|:----------------------|
| 0.0   | 50                    |
| 1.0   | 50                    |
| 2.0   | 50                    |
| 3.0   | 50                    |
| 4.0   | 50                    |
| 5.0   | 50                    |
| 6.0   | 50                    |
| 7.0   | 50                    |
| 8.0   | 50                    |

### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False

### Training Results
| Epoch   | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0141  | 1    | 0.4416        | -               |
| 0.7042  | 50   | 0.297         | -               |
| 1.4085  | 100  | 0.1016        | -               |
| 2.1127  | 150  | 0.0599        | -               |
| 2.8169  | 200  | 0.0339        | -               |
| 3.5211  | 250  | 0.0256        | -               |
| 4.2254  | 300  | 0.0235        | -               |
| 4.9296  | 350  | 0.0019        | -               |
| 5.6338  | 400  | 0.0113        | -               |
| 6.3380  | 450  | 0.0002        | -               |
| 7.0423  | 500  | 0.0001        | -               |
| 7.7465  | 550  | 0.0001        | -               |
| 8.4507  | 600  | 0.0001        | -               |
| 9.1549  | 650  | 0.0001        | -               |
| 9.8592  | 700  | 0.0001        | -               |
| 10.5634 | 750  | 0.0001        | -               |
| 11.2676 | 800  | 0.0001        | -               |
| 11.9718 | 850  | 0.0001        | -               |
| 12.6761 | 900  | 0.0001        | -               |
| 13.3803 | 950  | 0.0001        | -               |
| 14.0845 | 1000 | 0.0001        | -               |
| 14.7887 | 1050 | 0.0001        | -               |
| 15.4930 | 1100 | 0.0001        | -               |
| 16.1972 | 1150 | 0.0001        | -               |
| 16.9014 | 1200 | 0.0           | -               |
| 17.6056 | 1250 | 0.0001        | -               |
| 18.3099 | 1300 | 0.0001        | -               |
| 19.0141 | 1350 | 0.0001        | -               |
| 19.7183 | 1400 | 0.0           | -               |

### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0

## Citation

### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->