File size: 10,934 Bytes
a8e5f16 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 |
---
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 명절선물 동원참치 S12호 참치선물세트 설선물 한가위 동원참치 S12호 제이에스포
- text: 동원참치 덕용 업소용 대용량 덕용 참치 1.88kg 주식회사 이너피스(inner peace)
- text: 사조 자연산 골뱅이 400g 주식회사 당장만나
- text: 목우촌 뚝심 340g 장보고가
- text: 농심 알쿠니아 황도 2절 통조림 850g 알쿠니아 황도 통조림 200g x 3개입 지에스(GS) 금성상회
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9854036341971999
name: Metric
---
# SetFit with mini1013/master_domain
This is a [SetFit](https://github.com/huggingface/setfit) model that can be used for Text Classification. This SetFit model uses [mini1013/master_domain](https://huggingface.co/mini1013/master_domain) as the Sentence Transformer embedding model. A [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
1. Fine-tuning a [Sentence Transformer](https://www.sbert.net) with contrastive learning.
2. Training a classification head with features from the fine-tuned Sentence Transformer.
## Model Details
### Model Description
- **Model Type:** SetFit
- **Sentence Transformer body:** [mini1013/master_domain](https://huggingface.co/mini1013/master_domain)
- **Classification head:** a [LogisticRegression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) instance
- **Maximum Sequence Length:** 512 tokens
- **Number of Classes:** 9 classes
<!-- - **Training Dataset:** [Unknown](https://huggingface.co/datasets/unknown) -->
<!-- - **Language:** Unknown -->
<!-- - **License:** Unknown -->
### Model Sources
- **Repository:** [SetFit on GitHub](https://github.com/huggingface/setfit)
- **Paper:** [Efficient Few-Shot Learning Without Prompts](https://arxiv.org/abs/2209.11055)
- **Blogpost:** [SetFit: Efficient Few-Shot Learning Without Prompts](https://huggingface.co/blog/setfit)
### Model Labels
| Label | Examples |
|:------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.0 | <ul><li>'그린올리브 365g 동서 리치스 올리브 샐러드 화남F.C'</li><li>'동서 리치스 슬라이스 오이피클 3kg 무성유통'</li><li>'리치스 슬라이스 오이피클 3kg 피클 화남F.C'</li></ul> |
| 3.0 | <ul><li>'CJ제일제당 스팸12호 1세트 위드'</li><li>'CJ제일제당 스팸 복합 5호 선물세트 보담유통'</li><li>'스팸복합5호 햄 카놀라유 선물세트 복합 명절 추석 세트 땡그리나'</li></ul> |
| 4.0 | <ul><li>'동원 스위트콘 340g 골든 동원 저스트 스위트콘 340g(리뉴얼) 중앙 리테일'</li><li>'오뚜기 스위트콘 옥수수통조림 340g 스위트콘 340g x 1개 주식회사 로씨네'</li><li>'동서 리치스 홀커널 스위트콘 425g 원터치 옥수수 캔 통조림 주식회사 당장만나'</li></ul> |
| 7.0 | <ul><li>'스팸 마일드 25% 라이트 340g 외 스팸 4종 1. 스팸 클래식 200g 주식회사 하포테크'</li><li>'CJ제일제당 스팸 싱글 클래식 80g CJ제일제당 스팸 싱글 25% 라이트 80g 삼영유통'</li><li>'통조림 CJ제일제당 스팸 클래식 200g/햄통조림 ~통조림/캔햄_쿡샵 스위트콘 (태국산) 420g 단비마켓'</li></ul> |
| 2.0 | <ul><li>'샘표 김치찌개용꽁치280g/김치찌개전용꽁치통조림 주식회사 달인식자재'</li><li>'샘표 고등어 원터치 400g 조이텍'</li><li>'통조림 오뚜기 고등어 400g/참치캔 ~150g이상참치_동원 고추참치 150g 모두유통주식회사'</li></ul> |
| 1.0 | <ul><li>'화풍 양송이 편 2.8Kg 다유몰'</li><li>'디벨라 렌틸스 400g /렌즈콩 (주)푸드올마켓'</li><li>'몬 코코넛밀크 400ml 02_콕_코코넛밀크_400ml 정앤남'</li></ul> |
| 0.0 | <ul><li>'유동 자연산 골뱅이 230g /s/ 번데기 술안주 비빔면 소면 무침 국수 야식 통조림 (주)강남상사'</li><li>'동원에프앤비 동원 자연산 골뱅이 230g 주식회사 진현유통'</li><li>'자연산 골뱅이캔삼포140g 스완인터내셔널'</li></ul> |
| 5.0 | <ul><li>'동원참치 고추참치 통조림 100g 동원 참치 12종_17.동원 고추 참치 150g (주)다누림글로벌'</li><li>'오뚜기 참치빅캔 살코기 1.88kg 플랜트더퓨처'</li><li>'동원 참치 3kg 대용량 참치캔 업소용 코스트코 태양팜스'</li></ul> |
| 8.0 | <ul><li>'샘표 통조림캔 황도 400g 조림용고등어 400g (주)두배로'</li><li>'동서 리치스 파인애플 슬라이스 836g (주)푸드팜'</li><li>'동서 리치스 후르츠칵테일 3kg 미동의 제이모리'</li></ul> |
## Evaluation
### Metrics
| Label | Metric |
|:--------|:-------|
| **all** | 0.9854 |
## Uses
### Direct Use for Inference
First install the SetFit library:
```bash
pip install setfit
```
Then you can load this model and run inference.
```python
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_fd21")
# Run inference
preds = model("목우촌 뚝심 340g 장보고가")
```
<!--
### Downstream Use
*List how someone could finetune this model on their own dataset.*
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Set Metrics
| Training set | Min | Median | Max |
|:-------------|:----|:-------|:----|
| Word count | 3 | 8.4489 | 22 |
| Label | Training Sample Count |
|:------|:----------------------|
| 0.0 | 50 |
| 1.0 | 50 |
| 2.0 | 50 |
| 3.0 | 50 |
| 4.0 | 50 |
| 5.0 | 50 |
| 6.0 | 50 |
| 7.0 | 50 |
| 8.0 | 50 |
### Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
### Training Results
| Epoch | Step | Training Loss | Validation Loss |
|:-------:|:----:|:-------------:|:---------------:|
| 0.0141 | 1 | 0.4416 | - |
| 0.7042 | 50 | 0.297 | - |
| 1.4085 | 100 | 0.1016 | - |
| 2.1127 | 150 | 0.0599 | - |
| 2.8169 | 200 | 0.0339 | - |
| 3.5211 | 250 | 0.0256 | - |
| 4.2254 | 300 | 0.0235 | - |
| 4.9296 | 350 | 0.0019 | - |
| 5.6338 | 400 | 0.0113 | - |
| 6.3380 | 450 | 0.0002 | - |
| 7.0423 | 500 | 0.0001 | - |
| 7.7465 | 550 | 0.0001 | - |
| 8.4507 | 600 | 0.0001 | - |
| 9.1549 | 650 | 0.0001 | - |
| 9.8592 | 700 | 0.0001 | - |
| 10.5634 | 750 | 0.0001 | - |
| 11.2676 | 800 | 0.0001 | - |
| 11.9718 | 850 | 0.0001 | - |
| 12.6761 | 900 | 0.0001 | - |
| 13.3803 | 950 | 0.0001 | - |
| 14.0845 | 1000 | 0.0001 | - |
| 14.7887 | 1050 | 0.0001 | - |
| 15.4930 | 1100 | 0.0001 | - |
| 16.1972 | 1150 | 0.0001 | - |
| 16.9014 | 1200 | 0.0 | - |
| 17.6056 | 1250 | 0.0001 | - |
| 18.3099 | 1300 | 0.0001 | - |
| 19.0141 | 1350 | 0.0001 | - |
| 19.7183 | 1400 | 0.0 | - |
### Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
## Citation
### BibTeX
```bibtex
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |